Search Results
You are looking at 1 - 10 of 14 items for :
- Author or Editor: A. Fekete x
- Medical and Health Sciences x
- Refine by Access: All Content x
The aim of this study was to examine the changes of the daily energy amount of lactose, protein and fat throughout the lactations, and compare them to each other. A total of 309 Israeli Holstein-Friesian cows from one kibbutz were investigated in three lactations, and information was given for a period of five years from 1996 to the end of 2000. The distribution of milk components and milk yield during lactation, and changes of the absolute and relative energy amount in the different milk components were calculated and evaluated. The results showed changes in the energy content of milk and its different components throughout the lactation. Each component (fat, lactose and protein) is dominant in different periods during the lactation. The energy amount from fat reaches a peak first, between days 40 and 50. Lactose has a peak at about day 66 of lactation, and protein reaches the peak last, approximately at day 104 of lactation. It seems that this peak sequence is constant and it is considered to be physiological. It might be suggested that there is a regulation governing the secretion of the different components at different times, and only one component is dominant in a given period. Each component exerts negative and positive influences on the secretion of the other components, which interact with each other and are not fully independent.
In order to investigate the effects of exposure to possible environmental pollutants such as Cd, Pb and Hg on haematological and serum biochemistry values, New Zealand White female rabbits were treated orally with distilled water solutions of CdSO4·H2O, Pb(NO3)2 and HgCl2 (n = 4/treatment) in concentrations of 2.3, 4.1, and 30 mg/kg dry matter, respectively, for 28 days. The initial concentrations of Cd, Pb, and Hg in serum were significantly increased by the treatment. Exposure to Pb significantly decreased the red blood cell (RBC) count, haemoglobin (Hgb) concentration and the haematocrit (Hct) value. The Zn-protoporphyrin concentration did not change as a result of Pb exposure. Pb and Hg loading significantly increased the aspartate aminotransferase (AST) activity. Alanine aminotransferase (ALT) activity was also increased by both Hg and Cd exposure. Comparing the treated and the control rabbits, all the trace elements studied significantly reduced the activity of enzymes in the pancreatic tissues. The haematological results indicate that hyperchromic macrocytic anaemia developed in rabbits treated with Pb. The increased activities of both AST and ALT indicate pathophysiological changes of the liver parenchyma, which was verified by focal fatty infiltration seen histopathologically. Cd exposure could exert a toxic effect on the kidneys, although the slight tubulonephrosis developed would not possibly affect the renal function. The reduced activities of amylase, trypsin, protease and lipase induced by Cd, Pb and Hg suggest toxicity to the pancreas.
The effects of dietary levels of manganese (Mn) in inorganic (MnO) and organic (Mn fumarate) forms were evaluated on cockerel chicks. A basal corn-soybean diet with 23 mg/kg Mn was supplemented with levels of 0, 30, 60 and 240 ppm Mn from both Mn sources. Each treatment was replicated in five pens of 10 chicks. The chicks were fed diets ad libitum from 14 to 49 days of age, after which five birds per treatment were sacrificed for pathomorphological examinations and analysis. The treatments did not exert significant effects on the body weight (BW), the feed/gain (F/G) ratio or the mortality rate. According to the necropsy findings, no growth retardation or emaciation occurred in either of the groups and the differences in the average absolute and relative organ weights were not significant (P ? 0.05). Tissue analysis indicated that the tibia showed the greatest response to Mn, followed by the liver and kidney. Accumulation in the tibia was higher (P < 0.05) with supplements of 30, 60 and 240 mg/kg from both Mn sources (3.71, 3.78, 4.44, and 3.68, 4.00, 4.36 mg/kg DM, MnO and Mn fumarate, respectively) compared to the control group (3.21 mg/kg). Accumulation in the liver increased significantly (P < 0.05) only with supplements of 60 and 240 ppm independently of the Mn source (12.7, 14.2, and 14.0, 14.9 mg/kg, respectively) compared to the control (9.8 mg/kg). Similarly, kidney tissue Mn was higher (P < 0.05) only with supplements of 60 and 240 ppm (12.8, 12.8, and 13.1, 12.5 mg/kg, respectively) compared to the control (10.2 mg/kg). At the same level of supplementation of the two Mn sources there were no significant differences (P ? 0.05) between the Mn concentrations of organs and tissues. Droppings sensitively reflected the intake, whereas blood plasma and feathers showed only the extreme Mn loading.
Potato and beetroot were grown on soils previously treated with heavy metal salts. Each particular microelement had a high concentration in both potato and beetroot [cadmium (Cd) 3.7 and 55.4, lead (Pb) 8.1 and 3.0, and mercury (Hg) 5.8 and 6.8 mg/kg dry matter, respectively]. In a metabolic balance trial 16 New Zealand White rabbits were fed 50 grams of basal diet and potato or beetroot ad libitum. The apparent digestibility of major nutrients and the accumulation of the microelements in different organs were investigated. Both potato and beetroot samples of high Pb and Hg content had the significantly (p < 0.05) lowest digestibility of organic matter and nitrogen-free extract. The Cd ingested from both potato and beetroot accumulated in the kidneys and liver (2.85 and 1.48 as well as 0.459 and 0.265 mg/kg, respectively). All the microelements (Cd, Pb and Hg) accumulated in the testicles (0.196, 0.32 and 0.199 mg/kg, respectively), reducing the rate of spermatogenesis. The tissue retention ofheavy metals depends not only on the element itself, but also upon the ‘carrier’ feedstuff.
A growth trial was carried out to test the effect of organic, trivalent chromium and L-carnitine on the body composition of growing rats. At the same time, an evaluation of different measurement methods (weight of epididymal fat pad, adipocyte morphometry, total body electrical conductivity) was performed. Outbred Wistar rats of 30 days of age were fed diets of different (0, 10 and 20%) protein level. The diets were supplemented with 4 mg/kg Cr as chromium nicotinate, and 100 mg/kg L-carnitine. The experimental feeding lasted 15 days, after a 5-day-long adjustment period. It was found that Cr addition increased feed intake. Both treatments caused changes in body composition, increasing fat and protein deposition. Organic chromium had no effect at either protein level, while L-carnitine improved the protein retention only at an optimum (20%) protein supply. No statistically significant correlation was found between total body electrical conductivity (TOBEC) and body composition, which could be attributed to the great individual differences. A close correlation was found among total body fat percentage, weight of epididymal fat pad and the adipocyte surface. The data suggest that there is an interaction between dietary protein supply and the effect of repartitioning agents.
Broiler chicken and rabbit experiments were carried out to study the effects of nickel (Ni) supplementation on growth performance and Ni metabolism. ROSS cockerels and New Zealand White female rabbits were fed a diet containing Ni in concentrations of 0, 50 and 500 mg/kg in dry matter (DM). Dietary supplementation of 50 mg Ni/kg slightly improved the body weight gain (BWG) and had a beneficial effect on the feed conversion efficiency (FCE) in broiler chickens. However, Ni added at a level of 500 mg/kg significantly (P < 0.05) reduced the BWG by 10% and resulted in significantly (P < 0.05) worse (2.3 ± 0.2 kg/kg) FCE. The relative weight of the liver in cockerels was significantly (P < 0.05) decreased by Ni as compared to the control group (1.7 and 2.1% vs. 2.6%). The activity of AST and CHE enzymes was increased insignificantly by dietary supplementation of 500 mg Ni/kg, indicating damage of the liver parenchyma. The results of serum biochemistry were confirmed by a mild or moderate form of pathological focal fatty infiltration of the liver in broilers. Supplemental Ni of 50 mg/kg concentration resulted in non-significantly increased BWG in rabbits. Ni added to the diet at a level of 500 mg/kg reduced the digestibility of crude protein by 3-4% and that of crude fibre by 20-25% in rabbits. Approx. 98% of the ingested Ni was lost from the body via the faeces, 0.5-1.5% via the urine and approx. 1% was incorporated into the organs of rabbits. As a result of dietary supplementation of 50 and 500 mg Ni/kg, Ni accumulated in the kidneys (4.9 ± 0.5 and 17.1 ± 3.1 vs. 1.9 ± 0.3 mg/kg DM), ribs (10.3 ± 0.4 and 10.4 ± 0.6 vs. 9.1 ± 0.6 mg/kg DM), heart (1.4 ± 0.2 and 2.5 ± 0.4 vs. 1.0 ± 0.1 mg/kg DM) and liver (1.3 ± 0.1 and 2.2 ± 0.2 vs. 0.9 ± 0.05 mg/kg DM), as compared to the control animals. It can be stated that supplementation of the diet with 50 mg Ni/kg had slight but non-significant beneficial effects on the growth performance of broiler chickens and rabbits.
Cytokine production has been implicated in the pathogenic mechanisms of infections caused by the staphylococci, since these bacteria may act as strong cytokine inducers. To gain deeper insight into the Th1 immune response activated by these bacteria, we have analyzed the interferon (IFN), interleukin-12 (IL-12) and IL-18-inducing activities of different Staphylococcus aureus (S. aureus), S. epidermidis and S. saprophyticus strains in human monocytes and murine bone marrow macrophages. A large majority of the S. aureus strains elicited the simultaneous production of IL-12 p70 and IFN-a in the human monocytes, while the S. epidermidis and S. saprophyticus strains induced only a low level of production, if any, of these cytokines. Furthermore, a majority of the S. aureus strains induced significantly higher IL-12 p70 and IL-18 titers in the murine bone marrow macrophages than did the S. epidermidis and S. saprophyticus strains. As IL-12, IL-18 and IFN-a stimulate Th1 differentiation synergistically, we suggest that S. aureus strains bias the immune response toward a Th1 phenotype, whereas S. epidermidis and S. saprophyticus strains provide a weaker stimulus for the production of Th1-inducing cytokines, and accordingly possibly elicit a less extensive Th1-associated adaptive immunity.
Urocortin 2 (Ucn 2) is a corticotrop releasing factor paralog peptide with many physiological functions and it has widespread distribution. There are some data on the cytoprotective effects of Ucn 2, but less is known about its neuro- and retinoprotective actions. We have previously shown that Ucn 2 is protective in ischemia-induced retinal degeneration. The aim of the present study was to examine the protective potential of Ucn 2 in monosodium-glutamate (MSG)-induced retinal degeneration by routine histology and to investigate cell-type specific effects by immunohistochemistry. Rat pups received MSG applied on postnatal days 1, 5 and 9 and Ucn 2 was injected intravitreally into one eye. Retinas were processed for histology and immunocytochemistry after 3 weeks. Immunolabeling was determined for glial fibrillary acidic protein, vesicular glutamate transporter 1, protein kinase Cα, calbindin, parvalbumin and calretinin. Retinal tissue from animals treated with MSG showed severe degeneration compared to normal retinas, but intravitreal Ucn 2 treatment resulted in a retained retinal structure both at histological and neurochemical levels: distinct inner retinal layers and rescued inner retinal cells (different types of amacrine and rod bipolar cells) could be observed. These findings support the neuroprotective function of Ucn 2 in MSG-induced retinal degeneration.
Carrots were grown on soils polluted by heavy metal salts. Each particular microelement reached a high concentration [molybdenum (Mo) 39.00, cadmium (Cd) 2.30, lead (Pb) 4.01, mercury (Hg) 30.00, and selenium (Se) 36.20 mg/kg dry matter] in the carrot. In a metabolic balance trial conducted with 15 male and 15 female New Zealand White rabbits, the control animals (n = 5) were fed ad libitum with concentrate as basal diet, while the other rabbits received the basal diet and carrots containing the particular microelement. Blood samples were taken to determine the activity of serum enzymes. To investigate the metabolism of Mo, Cd, Pb, Hg and Se, samples were taken from the heart, liver, lungs, kidneys, spleen, ovaries/testicles, entire digestive tract, adipose tissue, femur, hair, faeces and urine. Carrot had significantly higher digestibility for all nutrients than the rabbit concentrate. Carrot samples of high Pb content had the lowest digestibility of crude protein. The microelements differed in their rate of accumulation in the organs examined: Mo and Cd accumulated in the kidneys, Pb in the kidneys, liver, bones and lungs, Hg in the kidneys and liver, while Se in the liver, kidneys and heart. The proportions of microelements eliminated from the body either via the faeces and urine (Mo 80.18% and Se 47.41%) or via the faeces (Cd 37.86%, Pb 66.39%, Hg 64.65%) were determined. Pathohistological examination revealed that the rate of spermatogenesis was reduced in the Mo, Cd, Pb and Hg groups compared to the control. Lead, Cd and Hg intake resulted in a considerable decrease in gamma-glutamyltransferase (GGT) and in an increase of alkaline phosphatase (ALP) activity because of damages to the kidneys and bones. All experimental treatments decreased the activity of cholinesterase (CHE) because of lesions in the liver.