Search Results
You are looking at 1 - 10 of 20 items for :
- Author or Editor: A. Khan x
- Biology and Life Sciences x
- Refine by Access: All Content x
Cognitive impairment is a common feature of both lead exposure and hyperphosphorylation of tau. We, therefore, investigated whether lead exposure would induce tau hyperphosphorylation. Wistar rat pups were exposed to 0.2% lead acetate via their dams’ drinking water from postnatal day 1 to 21. Lead in blood and brain were measured by atomic absorption spectrophotometry and the expression of tau, phosphorylated tau and various serine/threonine protein phosphatases (PP1, PP2A, PP2B and PP5) in the brain was analyzed by Western blot. Lead exposure significantly impaired learning and resulted in a significant reduction in the expression of tau but increased the phosphorylation of tau at Ser199/202, Thr212/Ser214 and Thr231. PP2A expression decreased, whereas, PP1 and PP5 expression increased in lead-exposed rats. These results demonstrate that early postnatal exposure to lead decrease PP2A expression and induce tau hyperphosphorylation at several serine and threonine residues. Hyperphosphorylation of tau may be a mechanism of Pb-induced deficits in learning and memory.
A diallel cross involving six wheat varieties, namely Sehar 06, Punjab 96, GA 2002, Barani 83, Kohistan 97 and Chakwal 86 was carried out to determine the mode of gene action for some physio-morphological traits under water stress conditions. Analysis of variance showed highly significant differences among genotypes for all the traits studied. Additive type of gene action with partial dominance was observed for flag leaf area, stomatal frequency, leaf venation, days to heading and spike density while 100-grain weight was controlled by over dominance. Additive type of gene actions shows the fruitfulness of early selection for the traits while over dominance type of gene action indicates selection in later generations. Epistasis was absent for all the traits studied.
A total of 32 bacterial isolates including Mesorhizobium (N=10), Azotobacter (N=12) and phosphate-solubilizing bacteria (N=10) were isolated and tested for siderophore, HCN, ammonia, indole acetic acid production and phosphate solubilization in vitro . The bacterial cultures were positive for siderophore, HCN and ammonia. Among the isolates, M. ciceri RC3 and A. chrococcum A4 displayed 35 and 14 μg ml −1 of IAA, respectively, whereas Bacillus produced 19 ( Bacillus PSB1) and 17 μg ml −1 ( Bacillus PSB10) of IAA in Luria Bertani broth. The diameter of the P solubilization zone varied between 4 ( Bacillus PSB1) and 5 mm ( Bacillus PSB10) and a considerable amount of tricalcium phosphate (7 and 8 μg ml −1 by Bacillus PSB1 and Bacillus PSB10, respectively) was released in liquid medium, with a concomitant drop in pH. The effects of N 2 -fixing and PS bacteria on the growth, chlorophyll content, seed yield, grain protein and N uptake of chickpea plants in field trials varied considerably between the treatments. Nodule number and biomass were significantly greater at 90 days after sowing (DAS), decreasing by 145 DAS. Seed yield increased by 250% due to inoculation with M. ciceri RC3 + A. chroococcum A4 + Bacillus PSB10, relative to the control treatment. Grain protein content ranged from 180 ( Bacillus PSB1) to 309 ng g −1 ( M. ciceri RC3 + A. chroococcum A4 + Bacillus PSB10) in inoculated chickpea. The N contents in roots and shoots differed considerably among the treatments.
Effects of fly ash amendments in soil (0%, 25% and 50% vol/vol), Ralstonia solanacearum, Meloidogyne incognita and Phomopsis vexans were observed on the growth, chlorophyll and carotenoid contents of eggplant. Addition of 25% fly ash in soil caused a significant increase in plant growth, chlorophyll and carotenoid contents over plants grown without fly ash. However, amendments of 50% fly ash in soil had an adverse effect on the growth, chlorophyll and carotenoid contents of eggplant. Inoculation of the pathogens caused a significant reduction in growth, chlorophyll and carotenoid contents. Inoculation of R. solanacearum caused the greatest reduction followed by P. vexans and M. incognita. Root galling and nematode multiplication was reduced with the increase in fly ash. Wilting and blight indices were 3 in plants grown in 0% and 25% fly ash amended soil while 4 in 50% fly ash amended soil.
Effects of ZnO nanoparticles (NPs) were studied on lentil plants inoculated with Alternaria alternata, Fusarium oxysporum f. sp. lentis, Xanthomonas axonopodis pv. phaseoli, Pseudomonas syringae pv. syringae and Meloidogyne incognita. Plant growth, chlorophyll, carotenoid contents, nitrate reductase (NR) activity and nodulation of lentil both in the presence and absence of Rhizobium sp. were examined in a pot test. Inoculation of plants with A. alternata / F. oxysporum f. sp. lentis / X. axonopodis pv. phaseoli / P. syringae pv. syringae or M. incognita caused a significant reduction in plant growth, number of pods per plant, chlorophyll, carotenoids and NR activity over uninoculated control. Inoculation of plants with Rhizobium sp. with or without pathogen increased plant growth and number of pods per plant, chlorophyll, carotenoids and NR activity. When plants were grown without Rhizobium, a foliar spray of plants with 10 ml solution of 0.1 mg ml–1of ZnO NPs per plant caused a significant increase in plant growth and number of pods, chlorophyll, carotenoid contents and NR activity in both inoculated and uninoculated plants. Spray of ZnO NPs to plants inoculated with Rhizobium sp. caused non significant increase in plant growth, number of pods per plant, chlorophyll, carotenoid contents and NR activity when plants were either uninoculated or inoculated with pathogens. Numbers of nodules per root system were high in plants treated with Rhizobium sp. but foliar spray of ZnO NPs had adverse effect on nodulation. Inoculation of plants with test pathogens also reduced nodulation. Spray of ZnO NPs to plants reduced galling, nematode multiplication, wilt, blight and leaf spot disease severity indices.
The allelic variation for Glu-1, Glu-3 loci and presence of IBL-1RS translocation was determined in 126 spring wheat accessions. The most common alleles at Glu-1 loci were Glu-A1b (59.52%), Glu-B1c (41.26%), and Glu-D1d (57.14%) and at Glu-3 loci were Glu-A3c (56.45%), Glu-B3j (29.36%), and Glu-D3b (76.98%). Modern Pakistani wheat varieties carried superior alleles at Glu-1 and Glu-3 loci for bread-making quality and had no negative influence of secalin protein-synthesized by 1BL-1RS translocation. For LMW-GS, the most common combination was Glu-A3c, Glu-B3j and Glu-D3b. The loci Glu-B1 and Glu-B3 had the highest allelic diversity of Glu-1 and Glu-3 loci, respectively.
Effect of Graphene oxide (GO) was observed on Meloidogyne incognita and Macrophomina phaseolina and on the growth of lentil in pot experiment. Treatment of plants with 10 ml solution of GO with 125, 250 and 500 ppm concentration caused a significant increase in plant dry weight over control. Inoculation of plants with M. incognita or M. phaseolina caused a significant reduction in plant dry weight over uninoculated control. Treatment of plants with 125, 250 and 500 ppm GO and subsequent inoculation with M. incognita or M. phaseolina caused a significant increase in plant dry weight over plants inoculated without GO pretreatment. Treatment of 500 ppm GO caused a greater increase in plant dry weight of M. incognita or M. phaseolina inoculated plants followed by 250 ppm and 125 ppm. Numbers of nodules per root system were high in plants without pathogen. Inoculation of M. incognita or M. phaseolina caused reduction in nodulation. However, treatment of GO in all the three concentrations had no significant effect on nodulation in plants both with and without pathogens. Treatment of GO resulted in reduced galling, nematode multiplication and root-rot index. Greater reduction in galling, nematode multiplication and root-rot index were observed in plants treated with 500 ppm GO followed by 250 ppm and 125 ppm. Indices were reduced to 4, 3 and 2, respectively, when plants with M. phaseolina were treated with 125, 250 and 500 ppm GO. This study shows that the use of GO is useful for the management of M. incognita and M. phaseolina on lentil.
Higher plant population and nitrogen management is an adopted approach for improving crop productivity from limited land resources. Moreover, higher plant density and nitrogen regimes may increase the risk of stalk lodging, which is a consequence of complex interplant competition of individual organs. Here, we aimed to investigate the dynamic change in morphology, chemical compositions and lignin promoting enzymes of the second basal inter-nodes altering lodging risk controlled by planting density and nitrogen levels. A field trial was conducted at the Mengcheng research station (33°9′44″N, 116°32′56″E), Huaibei plain, Anhui province, China. A randomized complete block design was adopted, in which four plant densities, i.e., 180, 240, 300, and 360 × 104 ha−1 and four N levels, i.e., 0, 180, 240, and 300 kg ha−1 were studied. The two popular wheat varieties AnNong0711 and YanNong19 were cultivated. Results revealed that the culm lodging resistance (CLRI) index of the second basal internodes was positively and significantly correlated with light interception, lignin and cellulose content. The lignin and cellulose contents were significantly and positive correlated to light interception. The increased planting density and nitrogen levels declined the lignin and its related enzymes activities. The variety AnNong0711 showed more resistive response to lodging compared to YanNong19. Overall our study found that increased planting densities and nitrogen regimes resulted in poor physical strength and enzymatic activity which enhanced lodging risk in wheat varieties. The current study demonstrated that stem bending strength of the basal internode was significantly positive correlated to grains per spike. The thousand grain weight and grain yield had a positive and significant relationship with stem bending strength of the basal internode. The results suggested that the variety YanNong19 produces higher grain yield (9298 kg ha−1) at density 240 × 104 plants ha−1, and 180 kg ha−1 nitrogen, while AnNong0711 produced higher grain yield (10178.86 kg ha−1) at density 240 × 104 plants ha−1 and with 240 kg ha−1 nitrogen. Moreover, this combination of nitrogen and planting density enhanced the grain yield with better lodging resistance.
Mechanisms involved in salt tolerance urge exploration and investigation of genotypic variation to assist future breeding programs. Comparative examination of ten wheat cultivars for salt tolerance and their response towards proline-seed-priming was performed. Exposure of wheat seedlings to salinity resulted in prominent reduction in root and shoot growth attributes of all cultivars. Furthermore, decrease in the chlorophyll contents was evident although this varied among cultivars. Wheat seedlings grown from proline pre-treated seeds exhibited improved photosynthetic pigments, besides this response was also cultivar and concentration dependent. Generally, salt stressed plants exhibited higher antioxidant enzyme activities. Proline priming significantly influenced antioxidant activities, however, its magnitude varied. The peroxidase activity varied among wheat cultivars that were evident from the analysis of POD activity on Native-PAGE gel. Salinity caused the accumulation of Na+ in the roots and the magnitude of Na+ translocation to the shoot was cultivar dependent. Similarly, K+ uptake and its distribution among root and shoot varied. Priming treatments affected ion distribution of Na+ and K+ but inter-cultivar variations were evident. Conclusively, all the cultivars investigated exhibited differential response to salinity and proline seed pre-treatments. However, the proline-priming mediated improvements in growth and antioxidant enzyme activities contributed to stress tolerance which partly relied on the ability of the plant to uptake sodium and its partitioning in the roots. Of the cultivars tested, Faisalabad-08 and Bhakhar-2002 were ranked as relatively salt tolerant and the cvs. AARI-10, MH-97 and Auqab-2000 as relatively salt sensitive.