Search Results
You are looking at 1 - 5 of 5 items for
- Author or Editor: A. Musumeci x
- Refine by Access: All Content x
Abstract
Hydrotalcites of formula Mg6A12(OH)16(PO4)�4H2O formed by intercalation with the phosphate anion as a function of pH show variation in the d-spacing attributed to the size of the hydrated anion in the interlayer. The value changes from 11.91 � for pH 9.3, to 7.88 � at pH 12.5. No crystalline hydrotalcites with phosphate in the interlayer were formed at pH 9.3. Thermal decomposition identifies three steps namely dehydration, dehydroxylation and some loss of carbonate during the thermal treatment. The addition of a thermally activated ZnAl-HT to a phosphate solution resulted in the uptake of the phosphate and the reformation of the hydrotalcite. The technology has the potential for water purification through anion removal.
Abstract
The thermal stability and thermal decomposition pathways for synthetic iowaite have been determined using thermogravimetry in conjunction with evolved gas mass spectrometry. Chemical analysis showed the formula of the synthesised iowaite to be Mg6.27Fe1.73(Cl)1.07(OH)16(CO3)0.336.1H2O and X-ray diffraction confirms the layered structure. Dehydration of the iowaite occurred at 35 and 79C. Dehydroxylation occurred at 254 and 291C. Both steps were associated with the loss of CO2. Hydrogen chloride gas was evolved in two steps at 368 and 434C. The products of the thermal decomposition were MgO and a spinel MgFe2O4. Experimentally it was found to be difficult to eliminate CO2 from inclusion in the interlayer during the synthesis of the iowaite compound and in this way the synthesised iowaite resembled the natural mineral.
Abstract
Thermoanalytical and electron microscopic methods were used as characterisation tools for the determination of the composition of single walled carbon nanotube samples. Acid purification method of single-walled carbon nanotubes (SWCN) proved to be effective, resulting in a three fold increase in the percentage of SWNTs present in the purified product as determined by thermogravimetric analysis. In this work we report the thermogravimetric analysis by conventional and high resolution methods of the raw SWNTs and purified SWNTs.
Abstract
The thermal decompositions of hydrotalcites with hexacyanoferrate(II) and hexacyanoferrate(III) in the interlayer have been studied using thermogravimetry combined with mass spectrometry. X-ray diffraction shows the hydrotalcites have a d(003) spacing of 11.1 and 10.9 which compares with a d-spacing of 7.9 and 7.98 for the hydrotalcite with carbonate or sulphate in the interlayer. XRD was also used to determine the products of the thermal decomposition. For the hydrotalcite decomposition the products were MgO, Fe2O3 and a spinel MgAl2O4. Dehydration and dehydroxylation take place in three steps each and the loss of cyanide ions in two steps.
Abstract
The thermal stability and thermal decomposition pathways for synthetic woodallite have been determined using thermogravimetry in conjunction with evolved gas mass spectrometry. Chemical analysis showed the formula of the synthesised woodallite to be Mg6.28Cr1.72Cl(OH)16(CO3)0.36⋅8.3H2O and X-ray diffraction confirms the layered LDH structure. Dehydration of the woodallite occurred at 65C. Dehydroxylation occurred at 302 and 338C. Both steps were associated with the loss of carbonate. Hydrogen chloride gas was evolved over a wide temperature range centred on 507C. The products of the thermal decomposition were MgO and a spinel MgCr2O4. Experimentally it was found to be difficult to eliminate CO2 from inclusion in the interlayer during the synthesis of the woodallite compound and in this way the synthesised woodallite resembled the natural mineral.