Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Ala A. Alhusban x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Electronic nicotine delivery systems (ENDs) are gaining popularity in Jordan as alternatives to tobacco cigarettes with an estimation of 10% of tobacco smokers switching to ENDs. Since nicotine is toxic and highly addictive substance, it is important to develop and validate an easy and rapid analytical method to accurately measure nicotine level in e-liquids. A simple high performance liquid chromatography–photodiode array detection (HPLC–PDA) method was developed and validated for rapid determination of the actual nicotine content in 11 of the most popular e-liquids brands available in the Jordanian market and compared to the nicotine levels appeared in the labeled packaging. The new method of analysis showed an excellent linearity with correlation factor equal to 0.9994 with analytical range between 100 and 1,000 µg/mL, and Limit of detection (LOD) and Limit of quantification (LOQ) of 32.6 µg/mL and 98.9 µg/mL, respectively. The results showed that the actual measured nicotine concentrations ranged from 0 to 25.81 mg/mL with percent deviation ranged from 63.1% less than to 3.24% more than the labeled concentration on packaging. And more than 10% deviation difference in actual nicotine concentrations versus labeled were found in 9 of the 11 e-liquid products (82%). In conclusion, nicotine labelling among e-liquids products have not accurately reflect the actual content which may have potential negative impact on users.

Open access

Abstract

Purpose

Development and validation of a selective analytical method to accurately and precisely quantify nicotine and cotinine levels in rat's plasma after exposure to tobacco cigarettes and tobacco water-pipe.

Methods

An easy HPLC-Photodiode-Array Detection (PDA) method was developed and validated for simultaneous determination of nicotine and cotinine levels in plasma of 15 rats (10 rats after tobacco products exposure and 5 control rats). Nicotine and cotinine were extracted in one step from plasma using acetonitrile and concentrated to lowest volume using nitrogen stream.

Results

The developed method offered a rapid analysis time of 14 min with single step of analytes extraction from rat's plasma with recovery percentage range between 93 and 95% and excellent linearity with correlation factor more than 0.994 with analytical range between 50 and 1000 ng mL−1 and LOD of 25 ng mL−1 and 23 ng mL−1 for nicotine and cotinine, respectively. The analysis of rat's plasma after 28 days of exposure to tobacco cigarettes and tobacco water-pipe revealed that the average concentrations of 376 ng mL−1 for cotinine and 223 ng mL−1 for nicotine were obtained after tobacco cigarettes exposure, and 220 ng mL−1 for cotinine and 192 ng mL−1 for nicotine after tobacco water-pipe exposure.

Conclusion

Higher nicotine and cotinine levels were found in plasma after tobacco cigarettes exposure than water-pipe exposure which may have potential undesirable effects on passive smokers in both cases.

Open access