Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Andrea Megyeri x
  • Social Sciences and Law x
  • Refine by Access: All Content x
Clear All Modify Search
Hungarian Journal of Legal Studies
Authors:
Renátó Vági
,
István Üveges
,
Andrea Megyeri
,
Anna Fülöp
,
János Pál Vadász
,
Dániel Nagy
, and
Gergely Márk Csányi

Abstract

Access to justice is a significant area of legal research, especially for Socio-Legal studies. The main research topics of this area are economic or class differences, gender inequalities, or national and ethnic differences in access to justice. However, there is a less discussed aspect of access to justice: the differences between access to legal information and the differences in user groups in terms of comprehending and processing legal information. This is an important topic because there are significant differences among people's abilities to process and understand legal texts, depending on whether we are dealing with a lawyer who is an expert in the given field, a non-expert lawyer, or a citizen with a low or zero (legal) educational level. The paper argues that unsupervised machine learning solutions can help even out these differences. It presents different unsupervised solutions, mainly clustering and topic modelling, which can help to increase access to legal information. Then we present a case study in which we examine these unsupervised tools in the processing of resolutions of the Central Bank in Hungary and anonymized court decisions. The paper argues that these tools can reveal the hidden contextual regularities in unstructured legal texts, facilitating the search for legal texts even for non-legal-experts.

Open access