Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: B. Bordás x
  • Biology and Life Sciences x
  • Refine by Access: All Content x
Clear All Modify Search

The uptake of persistent organic pollutants (POPs) from soil by plants allows the development of phytoremediation protocols to rehabilitate contaminated areas. In this study theoretical descriptors have been employed as independent variables for developing quantitative structure-activity relationship (QSAR) models for predicting the bioconcentration factors (BCFs) of POPs in different plants. A quantitative estimation has been given on the molecular properties of POPs in terms of theoretical molecular descriptors that are relevant to the uptake from soil and pharmacokinetic behavior in plants. The study resulted in statistically significant linear regression models developed for the BCF values of 20 polychlorinated dibenzo-p-dioxins/dibenzofurans and 14 polyhalogenated biphenyls in two zucchini varieties based on retrospective data. The parameters have been selected from a set of 1660 DRAGON, 150 VolSurf and 11 Quantum Chemical descriptors. The best regression model (Eq. 1), employing VolSurf, DRAGON GETAWAY and quantum chemical descriptors, displayed the following highly significant statistical parameters: n=27, R 2=0.940, SE=0.155, F=392.1, q 2=0.922; external validation set: n=7, R2=0.739, q2=0.47, SE=0.338, F=14.2 It is suggested that the QSAR models proposed might contribute to the development of workable soil remediation strategies.

Restricted access