Search Results

You are looking at 1 - 10 of 14 items for :

  • Author or Editor: B. Li x
  • Biology and Life Sciences x
  • Refine by Access: All Content x
Clear All Modify Search

Ecological transition zones are believed to be unique in their ability to shed light on the organization of populations and communities. In this paper, we study vegetation dynamics in the Great Plains short-grass steppe and Chihuahuan desert grassland ecotone in New Mexico, USA, using long-term, high resolution transect studies of the Sevilleta Long-Term Ecological Research Program. We focus on spatial pattern and examine this in several ways: patch size distribution, spatial autocorrelation analysis, and fractal scaling. These methods are used to examine patch size distributions in two sites representing distributional limits of the dominant species and for detection of an emergent scaling property. We found no characteristic spatial resolution (quadrat size), but rather a fractal structure of spatial variation in abundance and a trend towards consistency of the pattern in time when species were closer to their distributional limit. In this, we were able to detect a robust power law behaviour (the emergent property), indicating strong spatial organization via anti-persistence. Our investigation was exploratory in nature; we feel the results are highly suggestive of intrinsic organization in ecological dynamics and may also be useful in generating testable hypotheses regarding the behaviour of species along ecotones.

Restricted access

Small-scale vegetation patterns are frequently the results of plant-plant interactions such as facilitation and competition. Facilitation should be particularly pronounced when both abiotic and biotic stresses are high, but few studies were conducted in such habitats. In heavily-grazed pastures on the eastern Tibetan Plateau, an area with both high abiotic stress and strong biotic disturbance, we made relevés of herb species both beneath and outside canopies of three shrub species (Spiraea alpina, Sibiraea angustata and Potentilla fruticosa) differing in palatability and canopy structure. Herb species richness (S), pooled cover (PC) of all species, number of flowering species (FS) and number of inflorescences of all species (IN) were greater outside than beneath the shrub canopies. Evenness (J), in contrast, was smaller outside, while Shannon’s diversity index (H) was the same. Differences in S and J between plots beneath and outside the shrub canopies were greater in the case of P. fruticosa than in the cases of S. angustata and S. alpina, but differences in PC, FS or IN did not depend on the shrub species. Among the common species (frequency ≥6), 47–85% were equally frequent beneath and outside the shrubs, 13–39% were more frequent outside and 3–13% were more frequent beneath the shrubs. For the rarest species (frequency < 6), however, more species occurred beneath than outside the shrubs. The ordination diagram showed a clear separation between the relevés outside and beneath the shrubs and a gradient from P. fruticosa via S. alpina to S. angustata, accompanied by a distinct decrease in the extent of the difference between the vegetation beneath and outside the shrub canopies. In conclusion, the three shrub species facilitated some species in the herb layer and each shrub species had a specific impact, related to its canopy structure and palatability but also to the grazing pressure, which was greater around the P. fruticosa shrubs than around S. alpina and S. angustata.

Restricted access

High ozone (O3) can cause great damage to plants. However, the effect of high O3 on nitrogen (N) absorption, distribution, and utilization in rice at different growth stages under different planting densities is poorly understood. In the present study, a conventional cultivar (Yangdao 6) and a hybrid cultivar (II You 084) with different planting densities were exposed to an elevated amount of O3 (E-O3; 50% higher than that of the control, C-O3) under a freeair gas concentration enrichment (FACE) system. N absorption, distribution, and utilization of the green leaves, stems, and shoots at tillering, jointing heading, and maturity were investigated. Results showed that E-O3 significantly increased the N content in the shoots of Yangdao 6 by 7.5%, 12.7%, and 19.6%, respectively, at jointing, heading, and maturity. Also, the N content in the shoots of II You 084 increased by 5.4%, 6.5%, and 8.4% at the corresponding growth stage upon E-O3 application. E-O3 significantly decreased N accumulation of II You 084 by 8.3%, 4.9%, 4.7%, and 19.2%, respectively, at tillering, jointing, heading, and maturity. Further, E-O3 had a decreasing effect on the N distribution in green leaves (p ≤ 0.05) of both cultivars, but exerted an increasing effect on that in the stems of both cultivars (p ≤ 0.05). In addition, E-O3 significantly decreased the N use efficiency (NUE) for biomass of the two cultivars in all growth stages. These results revealed that E-O3 could increase the N content in rice plants but decrease the N accumulation and utilization in both cultivars. The effects of E-O3 on N absorption, distribution, and utilization were not affected by planting density.

Restricted access

Purple pericarp is an interesting and useful trait in Triticum aestivum, but the molecular mechanism behind this phenotype remains unclear. The allelic variation in the MYB transcriptors is associated with the phenotype of pigmented organs in many plants. In this study, a MYB transcription factor gene, TaMYB3, was isolated using homology-based cloning and a differentially expressed gene mining approach, to verify the function of the MYB transcriptor in the purple pericarp. The coding sequence of TaMYB3 in cultivar Gy115 was the same as that in cultivar Opata. TaMYB3 was localized to FL0.62–0.95 on chromosome 4BL. The TaMYB3 protein contains DNA-binding and transcription-activation domains, and clustered on a phylogenetic tree with the MYB proteins that regulates anthocyanin and proanthocyanin biosynthesis. TaMYB3 localized in the nuclei of Arabidopsis thaliana and wheat protoplasts after it was transiently expressed with PEG transformation. TaMYB3 induced anthocyanin synthesis in the pericarp cells of Opata in the dark in collaboration with the basic helix–loop–helix protein ZmR, which is also the function of ZmC1. However, TaMYB3 alone did not induce anthocyanin biosynthesis in the pericarp cells of the white grain wheat cultivar Opata in the light after bombardment, whereas the single protein ZmR did. Light increased the expression of TaMYB3 in the pericarp of Gy115 and Opata, but only induced anthocyanin biosynthesis in the grains of Gy115. Our results extend our understanding of the molecular mechanism of the purple pericarp trait in T. aestivum.

Restricted access

We described the structure of two different morphological gall types, subglobular and fusiform in Ephedra distachya. The gall midge, Xerephedromyia ustjurtensis Fedotova (Diptera: Cecidomyiidae) induces both types of gall formation. Galls are persistent resinous stem swellings usually subglobular and rarely fusiform in shape. Mature galls are solid, hard, indehiscent woody structure with many circular exit holes on their surface. Galls are anatomically similar, but different from the unaffected stems. The mean number of larval cavities varied significantly between subglobular and fusiform galls, while variation of diameter of the larval cavities was not significant between the gall morphotypes. We documented significant (p < 0.05) variation in total gall densities between sexes of Ephedra distachya, where male plants (mean = 0.89 ± 0.15) supporting higher gall densities than females (mean = 0.36±0.04). Total gall densities varied significantly (p < 0.05) among three sample populations of E. distachya and exhibited an increasing trend from mesic to xeric sites along an altitudinal gradient. Gall size also varied between plant sexes and among sites.

Restricted access

Numerous studies showed that lipid transfer proteins (LTPs) play important roles in flower, development, cuticular wax deposition and pathogen responses; however, their roles in abiotic stresses are relatively less reported. This study characterized the function of a maize LTP gene (ZmLTP3) during drought stress. ZmLTP3 gene was transferred into maize inbred line Jing2416; subsequently the glyphosate and drought tolerance of the over-expression (OE) lines were analyzed. Analysis showed that OE lines could significantly enhance drought tolerance. Transgenic maize lines OE6, OE7 and OE8 showed lower cell membrane damage, higher chlorophyll contents, higher protective enzymes activities, better growth and development under drought condition. The results strongly indicated that overexpression of ZmLTP3 could increase drought tolerances in maize.

Restricted access

Saccharomyces cerevisiae MERIT.ferm was used as mono- and mixed-cultures with Williopsis saturnus var. mrakii NCYC500 in mango wine fermentation. A ratio of 1:1000 (Saccharomyces:Williopsis) was chosen for mixed-culture fermentation to enable longer persistence of the latter. The monoculture of S. cerevisiae and mixed-culture was able to ferment to dryness with 7.0% and 7.7% ethanol, respectively. The monoculture of W. mrakii produced 1.45% ethanol. The mango wines fermented by S. cerevisiae alone and the mixed-culture were more yeasty and winey, which reflected their higher amounts of fusel alcohols, ethyl esters and medium-chain fatty acids. The mango wine fermented by W. mrakii alone was much less alcoholic, but fruitier, sweeter, which corresponded to its higher levels of acetate esters.

Restricted access

Rice sheath blight, caused by Rhizoctonia solani, is the most serious disease in the southern rice producing regions of China. The use of resistant varieties is the most economic strategy to control the disease. In this paper, a seedling inoculation method was used to evaluate rice germplasm resources for resistance to sheath blight. A total of 363 rice varieties were evaluated with a set of R. solani isolates. The results indicated that the rice varieties generally lacked resistance to R. solani, and no highly resistant/immune (HR) variety was found. However, two varieties displayed clear resistance (R) and 37 showed moderate resistance (MR) to the fungus. Overall, hybrid rice varieties have better resistance than conventional rice varieties, and among hybrid rice varieties, those with the II-32A sterile line genetic background were the most resistant. The results also indicated significant interactions between rice varieties and pathogen isolates, suggesting that an understanding of local R. solani populations is needed when recommending varieties to local growers.

Restricted access
Cereal Research Communications
Authors: W.F. Song, Z.Y. Ren, Y.B. Zhang, H.B. Zhao, X.B. Lv, J.L. Li, C.H. Guo, Q.J. Song, C.L. Zhang, W.L. Xin, and Z.M. Xiao

Two lines, L-19-613 and L-19-626, were produced from the common wheat cultivar Longmai 19 (L-19) by six consecutive backcrosses using biochemical marker-assisted selection. L-19 (Glu-D1a, Glu-A3c/Gli-A1?; Gli-A1? is a gene coding for unnamed gliadin) and L-19-613 (Glu-D1d, Glu-A3c/Gli-A1?) formed a set of near-isogenic lines (NILs) for HMW-GS, while L-19-613 and L-19-626 (Glu-D1d, Glu-A3e/Gli-A1m) constituted another set of NILs for the LMW-GS/gliadins. The three L-19 NILs were grown in the wheat breeding nursery in 2007 and 2008. The field experiments were designed using the three-column contrast arrangement method with four replicates. The three lines were ranked as follows for measurements of gluten strength, which was determined by the gluten index, Zeleny sedimentation, the stability and breakdown time of the farinogram, the maximum resistance and area of the extensogram, and the P andWvalues of the alveogram: L-19-613 > L-19-626 > L-19. The parameters listed above were significantly different between lines at the 0.05 or 0.01 level. The Glu-D1 and Glu-A3/Gli-A1 loci had additive effects on the gluten index, Zeleny sedimentation, stability, breakdown time, maximum resistance, area, P and W values. Although genetic variation at the Glu-A3/Gli-A1 locus had a great influence on wheat quality, the genetic difference between Glu-D1d and Glu-D1a at the Glu-D1 locus was much larger than that of Glu-A3c/Gli-A1? and Glu-A3e/Gli-A1m at the Glu-A3/Gli-A1 locus. Glu-D1d had negative effects on the extensibility and the L value compared with Glu-D1a. In contrast, Glu-A3c/Gli-A1? had a positive effect on these traits compared with Glu-A3e/Gli-A1m.

Restricted access