Search Results
You are looking at 1 - 5 of 5 items for :
- Author or Editor: B. Rai x
- Chemistry and Chemical Engineering x
- Refine by Access: All Content x
Abstract
The phase diagram of 1,4-dibromobenzene (DBB) with pyrogallol (PG) shows the formation of a monotectic and a eutectic alloys at 0.12 and 0.99 mol fractions of DBB, respectively. The phase equilibrium shows the large miscibility gap region with the upper consolute temperature 159.0 °C at 0.55 mol fraction of DBB. Growth kinetics of pure compounds and their monotectic and eutectic at different undercooling (ΔT) obey Hillig–Turnbull's equation: v = u (ΔT) n . Thermodynamic parameters such as enthalpy of mixing, entropy of fusion, interfacial energy, roughness parameters and excess thermodynamic functions were computed based on enthalpy of fusion values obtained from DSC studies. The Cahn wetting condition is applicable for monotectic alloy. The optical microphotographs of binary alloys show lamellar and dendritic features.
Abstract
The separation of minor actinides from high level liquid waste (HLLW) belongs to the principal challenges in current nuclear treatment. A derivative based on two cobalt bis(dicarbollide) (1−) ions covalently bound to the N,N′-di-n-octyl diglycolyl amide platform via diethyleneglycol chain with the formula {[(N,N′-(8-(OCH2 CH2)2-1,2-C2B9H10)(1′,2′-C2B9H11)-3,3′-Co)(N,N′-n-C8H17)NCOCH2]2O}Na2 (TODGA-COSAN), dissolved in low polar mixture of hexyl methyl ketone and n-dodecane, was used as an extractant for efficient Am(III)/Eu(III) separation from PUREX HLLW. Am(III) could be selectively stripped from loaded organic phase by using a stripping agent composed from 0.05 M DTPA and 1 M citric acid as a buffer and 1 M NaNO3 at pH 3.0. Separation factor between europium and americium of 13 was achieved. The europium remaining in the organic phase could be consecutively effectively stripped by using solution of ammonium citrate or ammonium citrate with ammonium DTPA at pH~7.
Abstract
Solid–liquid phase equilibrium data of three binary organic systems, namely, 3-hydroxybenzaldehyde (HB)—4-bromo-2-nitroanilne (BNA), benzoin (BN)—resorcinol (RC) and urea (U)—1,3-dinitrobenzene (DNB), were studied by the thaw–melt method. While the former two systems show the formation of simple eutectic, the third system shows the formation of a monotectic and a eutectic with a large immiscibility region where two immiscible liquid phases are in equilibrium with a liquid of single phase. Growth kinetics of the pure components, the monotectic and the eutectics, studied by measuring the rate of movement (v) of solid–liquid interface in a thin U-tube at different undercoolings (ΔT) suggests the applicability of the Hillig–Turnbull’s equation: v = u (ΔT) n , where v and n are the constants depending on the nature of the materials involved. The thermal properties of materials such as heat of mixing, entropy of fusion, roughness parameter, interfacial energy, and excess thermodynamic functions were computed from the enthalpy of fusion values, determined by differential scanning calorimeter (Mettler DSC-4000) system. The role of solid–liquid interfacial energy on morphologic change of monotectic growth has also been discussed. The microstructures of monotectic and eutectics were taken which showed lamellar and federal features.
Abstract
The solid–liquid phase equilibrium data of two binary organic systems, namely, urea (U)–3-aminophenol (AP) and 3-hydroxybenzaldehyde (HB)–β-napthaol (BN) show formation of a eutectic in each case. The enthalpies of fusion of the pure components and binary eutectics have been determined using differential scanning calorimeter (Mettler DSC-4000) system. The thermal properties of the materials such as heat of mixing, entropy of fusion, roughness parameter, interfacial energy and excess thermodynamic functions were computed using the enthalpy of fusion values. The microstructures of eutectics were developed using unidirectional thermal gradient and interested region were photographed.
Abstract
The elemental concentration of uranium in the samples collected from the ground water and the canal water in the Bathinda district of Punjab state, India, have been investigated using X-ray fluorescence technique. The residues obtained after drying the water samples were analysed using the energy dispersive X-ray fluorescence spectrometer consisting of Mo-anode X-ray tube equipped with selective absorbers as an excitation source and an Si(Li) detector. The uranium concentration values in significant fraction of the shallow ground water samples from the hand pumps is found to be above the permissible level of 15 ppb recommended by World Health Organisation for the drinking water, and its values in the canal water samples are below 5 ppb. To investigate the flyash from the coal-fired thermal power plants as a possible source of ground water contamination, the water samples collected from the surroundings of the power plants and the flyash samples were also analyzed. The results rule out flyash as a source of uranium contamination. Agrochemical processes occurring in the calcareous soils in the region are the favoured potential source of uranium contamination of the ground water.