Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Balázs Székely x
  • Mathematics and Statistics x
  • Refine by Access: All Content x
Clear All Modify Search

Summary  

In this paper we define Brownian local time as the almost sure limit of the local times of a nested sequence of simple, symmetric random walks. The limit is jointly continuous in \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $(t,x)$ \end{document} . The rate of convergence is \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $n^{\frac14} (\log n)^{\frac34}$ \end{document} that is close to the best possible. The tools we apply are almost exclusively from elementary probability theory.

Restricted access

Abstract  

The exponential functional of simple, symmetric random walks with negative drift is an infinite polynomial Y = 1 + ξ1 + ξ1ξ2 + ξ1ξ2ξ3 + ⋯ of independent and identically distributed non-negative random variables. It has moments that are rational functions of the variables μ k = E k ) < 1 with universal coefficients. It turns out that such a coefficient is equal to the number of permutations with descent set defined by the multiindex of the coefficient. A recursion enumerates all numbers of permutations with given descent sets in the form of a Pascal-type triangle.

Restricted access