Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: C. Pandey x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Recoil reactions of128I in liquid methyl iodide, ethyl iodide and n-butyl iodide target systems in the presence of benzene diluent have been studied by the charged plate technique. The investigations have been carried out over a wide range of diluent concentration. It has been observed that there are more collected recoil charged128I species on the anode than on the cathode. The presence of benzene diluent in the target systems prior to neutron irradiation reduces the recoil collection on both electrodes.

Restricted access

The dithiocarbamato complexes of titanyl(IV), zirconyl(IV) and hafnyl(IV), abbreviated as MO(S2CNRR)2·nH2O(M=Ti, Zr or Hf,R=H,R′=C5H9;R=H,R′=C7H11,n=1 for Ti andn=2 for Zr and Hf), were prepared in aqueous medium and characterized by elemental analyses, magnetic susceptibility measurements and IR spectral studies. The thermal behaviour of these compounds under non-isothermal conditions was investigated by thermogravimetric, derivative thermogravimetric and differential scanning calorimctric techniques in nitrogen and oxygen atmospheres. The intermediates obtained at the end of various thermal decomposition steps were identified on the basis of analyses and IR spectral studies. Kinetic parameters, such as apparent activation energy and order of reaction, were determined by the graphical method of Coats and Redfern. The heats of reaction for the different decomposition steps were calculated from the DSC curves.

Restricted access

Abstract

This communication presents the experimental study and performance analysis of a solar air heater with and without phase change material (PCM) viz. paraffin wax and hytherm oil. There are three different arrangements viz. without PCM, with PCM and with hytherm oil to study the comparative performance of this experimental system. Inlet, outlet temperatures and radiation with respect to time have been recorded and found that the output temperature in case with thermal energy storage (TES) is higher than that of without TES, besides, the outlet temperature with paraffin wax is slightly greater than that of with hytherm oil. Also there is no energy gain in the evening in case of without TES but in case of with TES there is a heat gain for around 4 h in the evening which gives the backup for hot air for around four more hours which is the main advantage of this systems with TES. Based on the data, the efficiency of the system has been calculated and it is noted that the efficiency in the case of heat storage is higher than that of without TES, besides the efficiency in the case of the paraffin wax is slightly higher than that of the hytherm oil case.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors:
Satyabrata Mishra
,
Falix Lawrence
,
R. Sreenivasan
,
N. Pandey
,
C. Mallika
,
S. Koganti
, and
U. Kamachi Mudali

Abstract  

Removal of nitric acid from high level liquid wastes (HLLW) of nuclear fuel reprocessing plants is warranted for simplifying the procedure for waste fixing. Chemical denitration aims to reduce the waste volume by destroying the acidity and subsequent concentration by adding suitable reductants. Reduction of nitric acid to gaseous products is an attractive way to accomplish denitration. Nitric acid reduction with formaldehyde proceeds with the formation of CO2, NO2, NO or N2O depending on the reaction conditions and all the reaction products except water can be eliminated from the system in gaseous form. The HNO3–HCHO reaction is governed by a complex mechanism of exhibiting relatively long induction period, depending upon the temperature, concentration of reactants and nitrous acid reaction intermediate. In the present work, a homogeneous denitration process with formaldehyde which offers safety and is governed by controlled kinetics was demonstrated on a laboratory scale. The induction period before commencement of the reaction was eliminated by maintaining the reaction mixture at a pre determined temperature of 98 °C. Based on the results accrued from lab scale experiments, the equipment for pilot plant scale operation was designed, the reaction efficiency for continuous denitration was determined and the investigation of nitric acid destruction was extended to full-scale plant capacity. The role of organics in the waste in foaming up of the reaction mixture was also studied using a synthetic waste solution.

Restricted access

Abstract

Magnetic nanoparticles of cobalt ferrite have been synthesized by citrate precursor method. TG-DSC studies have been made to get the idea of the optimum temperature of annealing that could lead to the formation of nanoparticles. Annealing the citrate precursor was done at 450, 650, and 973 °C. The X-ray diffraction (XRD) studies and the scanning electron microscopy (SEM) have been used for characterization. The data from vibrating sample magnetometer and photoluminescence spectrometer (PL) have been analyzed for exploring their applications. Using the Scherrer formula, the crystallite size was found to be 25, 32, and 43 nm, respectively, using the three temperatures. The particle size increased with annealing temperature. Rietveld refinements on the X-ray (XRD) data were done on the cobalt ferrite nanoparticles (monoclinic cells) obtained on annealing at 650 °C, selecting the space group P2/M. The values of coercivity (1574.4 G) and retentivity (18.705 emu g−1) were found out in the sample annealed at 650 °C while magnetization (39.032 emu g−1) was also found in the sample annealed at 973 °C. The photoluminescence (PL) property of these samples were studied using 225, 330, and 350 nm excitation wavelength radiation source. The PL intensity was found to be increasing with the particle size.

Restricted access