Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: CP Kovesdy x
- Medical and Health Sciences x
- Refine by Access: All Content x
The recent explosion of scientific interest in the gut microbiota has dramatically advanced our understanding of the complex pathophysiological interactions between the gut and multiple organs in health and disease. Emerging evidence has revealed that the gut microbiota is significantly altered in patients with chronic kidney disease (CKD), along with impaired intestinal barrier function. These alterations allow translocation of various gut-derived products into the systemic circulation, contributing to the development and progression of CKD and cardiovascular disease (CVD), partly mediated by chronic inflammation. Among potentially toxic gut-derived products identifiable in the systemic circulation, bacterial endotoxin and gut metabolites (e.g., p-cresyl sulfate and trimethylamine-N-oxide) have been extensively studied for their immunostimulatory and atherogenic properties. Recent studies have also suggested similar biological properties of bacterial DNA fragments circulating in the blood of patients with CKD, even in the absence of overt infections. Despite the accumulating evidence of the gut microbiota in CKD and its therapeutic potential for CVD, the precise mechanisms for multidirectional interactions between the gut, kidney, and heart remain poorly understood. This review aims to provide recent evidence on the associations between the gut microbiota, CKD, and CVD, and summarize current understanding of the potential pathophysiological mechanisms underlying the “gut–kidney–heart” axis in CKD.
Obesity has become a worldwide epidemic, and its prevalence has been projected to grow by 40% in the next decade. This increasing prevalence has implications for the risk of diabetes, cardiovascular disease, and also for chronic kidney disease (CKD). A high body mass index is one of the strongest risk factors for new-onset CKD. In individuals affected by obesity, a compensatory hyperfiltration occurs to meet the heightened metabolic demands of the increased body weight. The increase in intraglomerular pressure can damage the kidneys and raise the risk of developing CKD in the long-term. The incidence of obesity-related glomerulopathy has increased tenfold in recent years. Obesity has also been shown to be a risk factor for nephrolithiasis, and for a number of malignancies including kidney cancer. This year the World Kidney Day promotes education on the harmful consequences of obesity and its association with kidney disease, advocating healthy lifestyle, and health policy measures that makes preventive behaviors an affordable option.