Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: D. Wolf x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search
Journal of Thermal Analysis and Calorimetry
Authors: K. Kafarska, D. Czakis-Sulikowska, and W. Wolf

Abstract  

New metal(II) complexes with empirical formulae Co(ibup)2·4H2O, Cd(ibup)2·3H2O, Co(nap)2·H2O, Cd(nap)2·3H2O (where ibup=(CH3)2CHCH2C6H4CH(CH3COO) and nap=CH3O(C10H6)CH(CH3COO)) were isolated and investigated. The complexes were characterized by elemental analysis, molar conductance, IR spectroscopy and thermal decomposition. The thermal behavior was studied by TG, DTG, DTA methods under non-isothermal conditions in air atmosphere. The hydrated complexes lose water molecules in first step. All complexes decompose via intermediate products to corresponding metal oxides CoO and CdO. A coupled TG-MS system was used to detect the principal volatile products of thermolysis and fragmentation processes of Co(nap)2·H2O. The IR spectra of studied complexes revealed also absorption of the carboxylate group. Principal concern with the position of asymmetric, symmetric frequencies. The value of their separation allow to deduce about type of coordination these groups.

Restricted access

Abstract  

Differential scanning microcalorimetric measurements on phase transitions in water-oil-surfactant mixtures are presented, demonstrating that this method is highly sensitive towards small heat changes connected with structural transitions in the samples. The values for the latent heat of phase transitions are determined and the results are compared with predictions from mean field theory, emphasizing the role calorimetric experiments can play to identify the most important contributions to the free energy describing the mixtures. Doing this, the present status of the understanding of temperature dependent phase transitions in microemulsions is reviewed.

Restricted access

Summary  

We have used inductively coupled plasma mass spectrometry (ICP-MS) as the primary tool for determining concentrations of a suite of nuclides in samples excised from high-burnup spent nuclear fuel rods taken from light water nuclear reactors. The complete analysis included the determination of 95Mo, 99Tc, 101Ru, 103Rh, 109Ag, 137Cs, 143Nd, 145Nd,148Nd,147Sm, 149Sm, 150Sm, 151Sm, 152Sm, 151Eu, 153Eu, 155Eu, 155Gd, 237Np, 234U, 235U, 236U, 238U, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 242mAm, and 243Am. The isotopic composition of fissiogenic lanthanide elements was determined using high-performance liquid chromatography (HPLC) with ICP-MS detection. These analytical results allow the determination of fuel burn-up based on 148Nd, Pu, and U content, as well as provide input for storage and disposal criticality calculations. Results show that ICP-MS along with HPLC-ICP-MS are suitable of performing routine determinations of most of these nuclides, with an uncertainty of ±10% at the 95% confidence level.

Restricted access

Abstract

Rapid detection of antibiotic resistances of clinical bacterial strains would allow an early selective antibiotic therapy and a faster intervention and implementation of infection control measurements. In clinical practice, however, conventional antibiotic susceptibility tests of bacteria often need 24 h until the results are obtained. The metabolic heat production of bacteria is an excellent possibility to record their physiological activities and could therefore be used for a rapid discrimination of bacterial strains which are resistant or non-resistant to antibiotics and also to lytic bacteriophages, respectively. Unfortunately, conventional calorimeters suffer from need of comparably large volumes of bacterial suspensions are characterised by slow operation and high costs which restrict their application in clinical laboratories. The present paper demonstrates that a new type of calorimeters developed on silicon-chip technology enables the detection of antibiotic resistances on a minute-timescale. For this reasons, a prototype chip calorimeter was used which sensitivity is 20 nW related to the heat production of about 104 bacteria. For a clear discrimination of antibiotic resistance about 105 bacteria are required. The antibiotic resistances and susceptibilities of different strains of Staphylococcus aureus to cefoxitin and the sensitivities of S. aureus DSM 18421 and E. coli DSM 498 to a mixture of two bacteriophages were studied. Comparing the heat productions of cultures incubated with antibiotics or bacteriophages to those without these antibacterial preparations enabled a clear discrimination of resistant and non-resistant strains already after totally 2 h.

Restricted access