Search Results

You are looking at 1 - 10 of 12 items for :

  • Author or Editor: G. J. Yang x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search

Summary

A simple and sensitive method of high-performance liquid chromatography with fluorescence detection (HPLC-FLD) was developed for the determination of icariin in capsules by precolumn chelation with aluminum. In order to obtain a stable fluorescence signal, the reaction conditions of the fluorescent chelation complex between icariin and aluminum were investigated in detail. Chromatography was carried out on an Agilent Zorbax Extend C18 column (150 mm × 4.6 mm, 5.0 μm) using methanol as mobile phase at a flow rate of 1.0 mL min−1. The excitation and emission wavelengths were set at 430 and 480 nm, respectively. At optimum conditions, the calibration curve was linear in the concentration range from 0.010 to 100.0 μg mL−1 with the limit of detection of 3.5 ng mL−1 (S/N = 3). A comprehensive method was validated for precision and accuracy. The method described here has been successfully applied for the determination of the icariin content in a capsule with satisfactory results.

Open access

Abstract  

Monochromatic MeV-energy neutron source for secondary reaction was developed utilizing tritium embedded titanium (Ti-3H) thin film via 3H(p,n)3He reaction. We have measured the neutron energies and the energy spread by resonance reactions of 12C(n,tot) and 28Si(n,tot). The available energy was within the range from 0.6 to 2.6 MeV. Energy spread was 1.6% at energy of 2.077 MeV. The flux in the beam direction was determined to be 3.76·107 n/s/sr by irradiating 197Au by about 2 MeV neutrons. This source was shown to be useful for measurements of nuclear data by measuring the total cross sections of neutrons on Fe and comparing these data to the data of ENDF-6.

Restricted access

Abstract  

Supramolecular 2,3- and 2,5-pyridinedicarboxylate (PDC) intercalated ZnAl-layered double hydroxides (2,3- and 2,5-PDC–ZnAl–LDHs) have been prepared by ion exchange method. The structure and composition of the intercalated materials have been studied by X-ray diffraction (XRD) and inductively coupled plasma emission spectroscopy (ICP). The study indicates that the 2,3-PDC and 2,5-PDC anions are accommodated as interdigitated bilayer and monolayer arrangement respectively between the sheets of LDHs. Furthermore, their thermal decomposition processes were studied by the use of in situ high temperature X-ray diffraction (HT-XRD), and the combined technique of thermogravimetry-differential thermal analysis-mass spectrometry (TG-DTA-MS) under N2 atmosphere. Based on the comparison study on the temperatures of both decarboxylation and complete decomposition of interlayer PDC, it can be concluded that 2,5-PDC–ZnAl–LDHs has higher thermal stability than that of 2,3-PDC–ZnAl–LDHs.

Restricted access

Abstract  

Poly(AN—co—St) (PAS) and poly(AN—St—MMA)(PASM) were synthetized by emulsion polymerisation. The glass transition temperatures (T g) of the copolymers and the relationship between T g and the components of the copolymers were investigated by differential scanning calorimetry. The results show that T g for the AN—St bipolymers has apeak value in the range 115–118°C at a content of 50 mass% St. When methyl methacrylate was added, the T g of the terpolymer was decreased by about 2–6°C.The thermostability and the activation energy E of degradation were determined by thermogravimetric analysis.

Restricted access

Abstract  

Positron annihilation induced Auger Electron Spectroscopy (PAES), makes use a beam of low energy positrons to excite Auger transitions by annihilating core electrons. This novel mechanism provides PAES with a number of unique features which distinguishes it from other methods of surface analysis. In PAES the very large collisionally induced secondary electron background which is present under the low energy Auger peaks using conventional tecniques can be eliminated by using a positron beam whose energy is below the range of Auger electron energies. In addition, PAES is more surface selective than conventional Auger Spectroscopy because the PAES signal originates almost exclusively from the topmost atomic layer due to the fact that the positrons annihilating with the core electrons are trapped in an image correlation well just outside the surface. In this paper, recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) to the study of surface structure and surface chemistry will be discussed including studies of the growth, alloying and inter-diffusion of ultrathin layers of metals, metals on semiconductors, and semiconductors on semiconductors. In addition, the possibilities for future application of PAES to the study of catalysis and surface chemistry will be outlined.

Restricted access

Abstract  

Photoinitiating behaviors of oligo(α-aminoketones) (OAK) macrophotoinitiator containing aminoalkylphenone group on free-radical photopolymerization had been investigated by differential photo-calorimetry (DPC). The macrophotoinitiator showed comparative performance with those commercial photoinitiators with lower molecular mass. The effect of photoinitiator concentrations and UV intensity on the polymerization rate was investigated, and the value of exponential factor was found to be 0.5 at the beginning of polymerization, suggesting that the photopolymerization initiated by OAK followed biradical termination mechanism. Photosensitizer isopropyl thioxanthone (ITX) and oxygen severely restricted the polymerization in these systems. Photoinitiators with lower molecular mass showed higher reactivity than those with higher molecular mass.

Restricted access

Abstract  

A new model has been deduced by assumed autocatalytic reactions. It includes two rate constants, k 1 and k 2, two reaction orders, m and n, and the initial concentration of [OH]. The model proposed has been applied to the curing reaction of a system of bisphenol-S epoxy resin (BPSER), with4,4'-diaminodiphenylmethane (DDM) as a curing agent. The curing reactions were studied by means of differential scanning calorimetry (DSC). Analysis of DSC data indicated that an autocatalytic behavior showed in the curing reaction. The new model was found to fit to the experimental data exactly. Rate constants, k 1 and k 2 were observed to be greater when curing temperature increased. The activation energies for k 1 and k 2 were 95.28 and 39.69 kJ mol–1, respectively. Diffusion control was incorporated to describe the cure in the latter stages.

Restricted access

Abstract  

Neutron capture cross sections on 63Cu and 186W were measured by fast neutron activation method at neutron energies from 1 to 2 MeV. Monoenergetic fast neutrons were produced by 3H(p,n)3He reaction. Neutron energy spread by target thickness, which was assumed to be the main factor of neutron energy spread, was estimated to be 1.5% at neutron energy of 2.077 MeV. Neutron capture cross sections on 63Cu and 186W were calculated by reference comparison method on those of 197Au(n,γ). Not only statistical errors of gamma-counts from samples but also systematic errors in the counting efficiency for HP Ge detector and the uncertainty of areal density of samples were considered in calculating neutron capture cross section. Estimated neutron capture cross sections on 63Cu and 186W were also compared with ENDF-6 data.

Restricted access

Abstract  

Structure activity relationship (SAR) has been playing a more and more important role in medicine design. We presented here a preliminary investigation on the relationship between the structure of different phosphonates and the preparation of corresponding complexes labeled with 153Sm. By study of seven complexes, it was found that the number of -PO3H2 groups, the stereoscopic distance between them and the existence of strong electron-providing groups in the ligand molecule affected the preparation of 153Sm-complex.

Restricted access

Summary

Silica-gel column chromatography and preparative reversed-phase high-performance liquid chromatography (RP-HPLC) were sequentially employed for the isolation of two antioxidants including gallic acid and methyl gallate from Folium Toonea Sinensis. An RP-HPLC-UV method was then developed and validated to rapidly determine their content in this herb with ethyl gallate as internal standard. The quantitation was performed on an XBridge Shield RP18 column (150 mm × 4.6 mm, 5 μm) under 40°C. The mobile phase consisting of acetonitrile and 0.1% formic acid aqueous solution was driven at 1.0 mL min−1 under gradient elution, and 270 nm was selected to monitor the separation. To evaluate the fitness for purpose of the method and to investigate the difference in the content of analytes among different samples, the leaves collected from five production sites were analyzed. The newly established method is suitable for routine analysis of gallic acid and methyl gallate in the herb and, hence, can assist in its quality assessment. It was also found that not only the content of two antioxidants but also the ratio varied significantly among different geographical origins. In addition, three samples from Yantai, Zumadian, and Zhenjiang were distinguished as they have a much higher content ratio than the other two.

Full access