Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: G. J. Yang x
  • Materials and Applied Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
Acta Alimentaria
Authors:
C.Y. Zhou
,
Q.W. Cheng
,
T. Chen
,
L.L. Meng
,
T.G. Sun
,
B. Hu
,
J. Yang
, and
D.Y. Zhang

Abstract

To study the feasibility of evaluating the quality characteristics of banana based on the browning area. The texture characteristics, total soluble solids (TSS), ascorbic acid, malondialdehyde (MDA) concentrations, relative conductivity, polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase (PAL) activities in banana peels were detected during storage. A linear model was made by principal component analysis and multiple linear regression between the banana browning area and characteristic indices. The results showed that the changes in the physiological characteristics of bananas were significantly different during different storage periods. The main factors that affected the banana browning area were relative conductivity, PAL, TSS, and MDA, indicating that lipid peroxidation, respiration, and metabolism of phenylpropanoids had significant influence on the banana browning area during storage. Thus, it is feasible to predict banana quality based on changes in browning area, which could be a rapid and non-destructive detection of banana quality during storage.

Restricted access

Abstract

This study aimed to explore the inhibitory effect and mechanism of the total alkaloids of Dendrobium officinale Kimura et Migo (DENA) against cholesterol esterase (CE). DENA was characterised by SEM, 1H NMR, and X-ray diffraction (XRD). The inhibitory effect and mechanism of DENA against CE were investigated through fluorescence chromatography, circular dichroism, and molecular docking. DENA inhibited CE activity (IC50 = 1.08 ± 0.09 mg mL−1), characterised by a non-competitive inhibition mechanism. Furthermore, DENA induced a fluorescence quenching in CE, causing a blue shift in the λmax. This coincided with a transition in the secondary structure of CE from a layered to a helical structure by circular dichroism, indicating a significant reduction in its stability. Moreover, molecular docking confirmed that DENA binds to amino acid residues in the enzyme through hydrogen bonds and hydrophobic interactions, leading to structural changes and reduced enzyme activity. These results suggest DENA has the potential to lower blood lipid levels by inhibiting CE activity.

Restricted access