Search Results

You are looking at 1 - 10 of 15 items for :

  • Author or Editor: H. Song x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Five column experiments have been carried out to investigate the effect of flow rate on the breakthrough curves (BTCs) of phosphate, fulvic acid, and uranium(VI) onto a silica column. Both BTCs of phosphate and fulvic acid, and three BTCs of uranium(VI) in the presence and absence of phosphate or fulvic acid at high flow rate published in the previous paper [<cite>1</cite>] were compared with corresponding initial parts of BTCs at low flow rate in this paper. Each BTC in this paper was expressed as both C/Co–t and C/Co–V/Vo plots, where C and Co are the concentrations in the influent and the effluent respectively, t and V are the time and the effluent volume from the start of injection of pulse solution respectively, Vo is the pore volume of the SiO2 column. Based on the experimental results and the relationship among V, t, and flow rate F, it was found that there are advantages to using C/Co–V/Vo plot as BTC to study the effect of flow rate. Based on these comparisons of C/Co–V/Vo plots at different flow rates and the theoretical analysis from the Bohart–Adams sorption model, it was found that the right shift (increase in V/Vo of breakthrough), the left shift (decrease in V/Vo of breakthrough), and the non-shift (non-change in V/Vo of breakthrough) of initial parts of BTCs with increasing flow rate are certain to occur instead of only left shift and that three different trends of shifts can be mainly attributed to different rate-controlling mechanisms of sorption process.

Restricted access

Abstract  

The thermal decompositions of dehydrated or anhydrous bivalent transition metal (Mn, Fe, Co, Ni, Cu, Zn, Cd) and alkali rare metal (Mg, Ca, Sr, Ba) methanesulfonates were studied by TG/DTG, IR and XRD techniques in dynamic Air at 250–850 °C. The initial decomposition temperatures were calculated from TG curves for each compound, which show the onsets of mass loss of methanesulfonates were above 400 °C. For transition metal methanesulfonates, the pyrolysis products at 850 °C were metal oxides. For alkali rare metal methanesulfonates, the pyrolysis products at 850 °C of Sr and Ba methanesulfonates were sulphates, while those of Mg and Ca methanesulfonate were mixtures of sulphate and oxide.

Restricted access

Abstract  

In order to remove the radiotoxic nuclides, Cs+ and I, from low-level liquid wastes, the adsorption characteristics have been studied using a mixed adsorbent of chabazite zeolite and activated carbon. The equilibrium data of each nuclide were well correlated with the DA equation in the wide range of equilibrium concentrations. The SEM-EDAX analysis provided precise understanding of the adsorption mechanism of each nuclide. A surface diffusion model was applied to estimate the intraparticle mass transfer and provided prediction results acceptable for practical implementation in the liquid waste treatment.

Restricted access

Modulated differential scanning calorimetry

III. Applications to measurements of the glass transition temperature and increment of heat capacity

Journal of Thermal Analysis and Calorimetry
Authors:
D. Hourston
,
M. Song
,
H. Pollock
, and
A. Hammiche

Abstract  

Modulated-temperature differential scanning calorimetry was used to measure the glass transition temperature,T g, the heat capacity relaxation in the glassy state and the increment of heat capacity, δCp, in the glass transition region for several polymers. The differential of heat capacity with respect to temperature was used to analyseT g and δCp simply and accurately. These measurements are not affected by complex thermal histories.

Restricted access

Abstract  

A modulated-temperature differential scanning calorimetry (M-TDSC) method for the analysis of interphases in multi-component polymer materials has been developed further. As examples, interphases in a polybutadiene-natural rubber (50:50 by mass) blend, a poly(methyl methacrylate)-poly(vinyl acetate) (50:50 by mass) structured latex film, a polyepichlorohydrinpoly(vinyl acetate) bilayer film, and polystyrene-polyurethane (40:60 by mass) and poly(ethyl methacrylate)-polyurethane (60:40 by mass) interpenetrating polymer networks were investigated. The mass fraction of interphase and its composition can be calculated quantitatively. These interphases do not exhibit clear separate glass transition temperatures, but occur continually between the glass transition temperatures of the constituent polymers.

Restricted access

Abstract  

The title compound 3,3-dinitroazetidinium (DNAZ) 3,5-dinitrosalicylate (3,5-DNSA) was prepared and the crystal structure has been determined by a four-circle X-ray diffractometer. The thermal behavior of the title compound was studied under a non-isothermal condition by DSC and TG/DTG techniques. The kinetic parameters were obtained from analysis of the TG curves by Kissinger method, Ozawa method, the differential method and the integral method. The kinetic model function in differential form and the value of E a and A of the decomposition reaction of the title compound are f(α)=4α3/4, 130.83 kJ mol−1 and 1013.80s−1, respectively. The critical temperature of thermal explosion of the title compound is 147.55 °C. The values of ΔS , ΔH and ΔG of this reaction are −1.35 J mol−1 K−1, 122.42 and 122.97 kJ mol−1, respectively. The specific heat capacity of the title compound was determined with a continuous C p mode of mircocalorimeter. Using the relationship between C p and T and the thermal decomposition parameters, the time of the thermal decomposition from initiation to thermal explosion (adiabatic time-to-explosion) was obtained.

Restricted access

Summary

A new high-performance liquid chromatography (HPLC) method has been developed and validated for determination of enantiomeric purity of thiazolidine-2-carboxylic acid within a short run time of less than 10 min. The method was based on pre-column derivatization of thiazolidine-2-carboxylic acid with aniline, and complete separation of enantiomers has been achieved on a Chiralcel OD-H analytical column (250 × 4.6 mm) using n-hexane-isopropanol (85:15 v/v) as mobile phase at a flow rate of 1.0 mL min−1 under UV and optical rotation (OR) detection. Detection wavelength was set at 254 nm. Then the effects of mobile phase and temperature on enantioselectivity were further evaluated. The method was validated with respect to precision, accuracy, linearity, limit of detection (LOD), limit of quantification (LOQ), and robustness. The recoveries were between 98.5 and 101.3% with percentage relative standard deviation less than 1.16%. The LOD and LOQ for the aniline derivatives of (+)-thiazolidine-2-carboxylic acid were 4.9 and 16.4 μg mL−1 and for the aniline derivatives (−)-thiazolidine-2-carboxylic acid were 5.1 and 17.2 μg mL−1, respectively.

Open access

Abstract  

Polyimide BTDA-ODA sample was prepared by polycondensation or step-growth polymerization method. Its low temperature heat capacities were measured by an adiabatic calorimeter in the temperature range between 80 and 400 K. No thermal anomaly was found in this temperature range. A DSC experiment was conducted in the temperature region from 373 to 673 K. There was not phase change or decomposition phenomena in this temperature range. However two glass transitions were found at 420.16 and 564.38 K. Corresponding heat capacity increments were 0.068 and 0.824 J g–1 K–1, respectively. To study the decomposition characteristics of BTDA-ODA, a TG experiment was carried out and it was found that this polyimide started to decompose at ca 673 K.

Restricted access

Abstract  

The sorption/desorption of radioruthenium was investigated by the batch method in sea water system at ambient temperature on the surface sediments obtained around the Daya Bay of Guangdong Province, where the first nuclear power station of China has been running from 1994. It was found that the sorption percentage was obtained to be around 40% for all the surface sediments in 60 minutes. Then, the sorption percentage goes up slowly. The sorption percentage of radioruthenium reached around 80% in 113 days (2713 hours). The distribution coefficients decreased from 3.16·104 to 1.35·103 ml/g with the increasing of sediment concentration in the range of 4–10000 mg/l. The results of the desorption experiments suggest that the sorption of radioruthenium is irreversible with 81.5% relative hysteresis coefficient.

Restricted access

Abstract  

Three kinds of marine bivalves (wild Saccostrea cucullata, aquacultured Perna viridis and aquacultured Pinctada martens), collected from Daya Bay, the South China Sea, were used to investigate the bio-accumulation of radioruthenium in the glass aquarium with natural seawater (pH 8.20, 35‰ salinity, filtered by 0.45 μm) at ambient temperature under laboratory feeding conditions. The experimental results show that the stead-state of biology concentration factor (BCF, ml/g) of radioruthenium was approached around 6 days for most species of bivalves. The values of BCF in shells are the highest in organs all the three bivalves. The orders of BCF values (ml·g−1) are as: Perna viridis (33.2) < Saccostrea cucullata (47.0) < Pinctada martensi (208.4) for shells and Saccostrea cucullata (1.5) < Pinctada martensi (2.2) ≈ Perma viridis (2.4) for soft tissues, respectively, after exposed for 14 days. The rate constants of uptake and elimination of radioruthenium on marine bivalves were also discussed by first-order kinetics model. The Pinctada martensi may be applicable to be an indicator for monitoring radioruthenium among the three bivalves.

Restricted access