Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: István Szilágyi x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search
Journal of Thermal Analysis and Calorimetry
Authors: Imre Szilágyi, István Sajó, Péter Király, Gábor Tárkányi, Attila Tóth, András Szabó, Katalin Varga-Josepovits, János Madarász, and György Pokol

Abstract  

This article discusses the formation and structure of ammonium tungsten bronzes, (NH4)xWO3−y. As analytical tools, TG/DTA-MS, XRD, SEM, Raman, XPS, and 1H-MAS NMR were used. The well-known α-hexagonal ammonium tungsten bronze (α-HATB, ICDD 42-0452) was thermally reduced and around 550 °C a hexagonal ammonium tungsten bronze formed, whose structure was similar to α-HATB, but the hexagonal channels were almost completely empty; thus, this phase was called reduced hexagonal (h-) WO3. In contrast with earlier considerations, it was found that the oxidation state of W atoms influenced at least as much the cell parameters of α-HATB and h-WO3, as the packing of the hexagonal channels. Between 600 and 650 °C reduced h-WO3 transformed into another ammonium tungsten bronze, whose structure was disputed in the literature. It was found that the structure of this phase—called β-HATB, (NH4)0.001WO2.79—was hexagonal.

Restricted access
Journal of Flow Chemistry
Authors: Gábor Máté, Dezső Szikra, Jakub Šimeček, Szandra Szilágyi, György Trencsényi, Hans-Jürgen Wester, István Kertész, and László Galuska

The synthesis and functional evaluation of a wide variety of radiolabeled chelator–biomolecule conjugates with high specific activity and radiochemical purity are crucial to development of personalized nuclear medicine. An excellent platform technology for achieving this objective involves use of generator-produced positron emission tomography (PET)-radionuclide 68Ga. Currently, applied manual methodology for optimization and development for new labeling techniques offers only slow screening with relatively high precursor consumption. A capillary-based microfluidic synthesis module with online high-performance liquid chromatography (HPLC) was constructed for the optimization of reaction parameters of 68Ga-PET tracers. This approach enables performance of 68Ga-labeling reactions in 10 μL volumes, followed by sample analysis. The high-throughput capacity of the system allows very rapid optimization. The optimal pH and ligand concentration from the experiments were utilized directly to the production of 68Ga-NODAGA-(RGD)2 and 68Ga-NOPO-RGD. Applying optimal parameters to production of these aforementioned radiopharmaceuticals allowed their synthesis with high radiochemical purity (over 95%) and with surprisingly negligible retention of residual activity in the system.

Restricted access