Search Results
You are looking at 1 - 10 of 12 items for :
- Author or Editor: J. A. García x
- Biology and Life Sciences x
- Refine by Access: All Content x
Activity and functional diversity of rhizosphere bacterial communities and fungal composition were studied in order to assess the effects of different genotypes (N8035, N224 and N8637) of Arabidopsis thaliana on these communities growing in different soils. Genotype effect and soil effect were studied independently. Also, the interactions between both factors (genotypes and soils) were considered. The activity was determined by thymidine and leucine incorporation analysis, and Biolog ECO plates were used to study bacterial functional diversity. Additionally, fungi groups (genera and/or species) were studied in the different rhizospheres. Statistical differences on thymidine incorporation between plant genotypes were only found in two of the soils. In addition, functional diversity (measured by Shanonn-Weaver index), showed statistical differences only in soil 1 for line N8035 (line B) vs . the other lines. Redundancy analysis (RDA) performed with Biolog data indicated and important effect of soil type, but also an effect of genotype since line N8035 (line B) was separated from the other lines within each soil in the RDA ordination, in spite of genotypic differences between them were minimum. Furthermore, carboxylic acids and amino acids were found to be the Biolog plate substrates with more influence in samples ordination in the Redundancy Analysis (RDA). However, fungi seem to be less labile to plant selection than bacteria probably due to a lower turn-over time of fungi than bacteria coupled with the short phenology of Arabidopsis . In this paper, plant-soil-micro-organism relationships in the rhizosphere were studied, and the complex interactions between them were highlighted. More studies are necessary to go deep in these interactions and to be able to asses the impact of genetically modified plants.
Mediterranean forests are especially prone to fire, a periodic disturbance that affects all the ecosystem components in different ways. Gathering knowledge on the particular responses and rate of recovery of multiple ecosystem components following a wildfire is crucial to reliably evaluate its consequences on biodiversity. Using eight sampling transects, we studied the changes in four ecosystem components (topsoil, plants, carabids, and staphylinids) during three years after a spring wildfire in a Quercus pyrenaica forest; and compared them with the surrounding unburnt forest (hereafter control). We found great variety of responses to fire suggesting each component may deal with this recurring disturbance via different adaptations, and that the time spent to recover to pre-disturbance conditions depends on the group of focus. Topsoil characteristics were highly variable and minor differences were found between burnt and control transects. Plant community was considerably affected by fire but rapidly recovered exceeding the control forest in species richness and cover, partly due to proliferation of annual herbs. However, plant species composition differed between burnt and control forests during the whole study period. Carabid beetles were more abundant and richer in species in the burnt forest, thanks to the arrival of seed predators favoured by post-fire drier and warmer conditions. Staphylinid beetle composition differed between control and burnt transects during the whole period, although their abundance was strongly variable. Distinct post-fire plant, carabid and staphylinid species composition suggests scattered low-intensity wildfires in this region may help to maintain habitat heterogeneity benefiting biodiversity at the landscape scale.
Abstract
The effect of processing parameters on microencapsulation of oregano essential with maltodextrin:gum arabic using a disk atomiser spray-dryer was evaluated. By means of response surface methodology, the feed flow rate and inlet air temperature were optimised. Powder yield, moisture content, essential oil retention, and antioxidant activity of microparticles were evaluated. The best conditions to produce microencapsulated oregano essential oil were 0.6 L h−1 for feed flow rate and 200 °C for inlet air temperature. With this combination a microencapsulated powder with 89.8% powder yield, 2.1% moisture content, 92.1% essential oil retention, 76 s solubilisation time, 12.9 g of water/100 g of dry matter, 0.3371 g mL−1 bulk density, 0.5826 g mL−1 tapped density, and 8.2 μm of average particle size was produced. The microencapsulation of oregano essential oil preserves the antioxidant and antimicrobial activities of its bioactive compounds.
Food partitioning among coexisting species in different habitats remains an important research topic in trophic ecology. In this work, we combined carbon and nitrogen stable isotope ratios and stomach content analyses to investigate differences in diet and niche overlap of two congeneric juvenile mullet species (Mugil curema and Mugil liza) coexisting in a marine surf-zone and an estuarine zone in southern Brazil (29oS). These habitats have contrasting levels of food availability, especially in terms of prey diversity, with higher microalgae diversity in the estuary than in the marine surf-zone. In these contrasting conditions, we predicted that both mullet species will have (a) higher niche overlap and smaller niche breadth at the marine surf-zone due to the common exploration of highly abundant surf-zone diatoms and (b) lower niche overlap and higher niche breadth inside the estuary due to selective feeding on more diverse food resources. Isotope niche areas (measured as standard ellipse areas) were higher in the estuary (6.10 and 6.18) than in the marine surf-zone (3.68 and 3.37) for both M. curema and M. liza, respectively. We observed an overlap of 52% in isotopic niches of both species in the marine surf-zone and none in the estuary. We also found contrasting patterns in the diet composition between species according to the habitat. At the marine surfzone, diatoms of the classes Bacillariophyceae and Coscinodiscophyceae dominated (> 99%) the food content of both mullet species. In contrast, green algae, cyanobacteria, dinoflagellates and flagellates comprised the diet of both species in the estuary. These results could be explained by spatial differences in food availability (especially regarding diversity of microalgae) between both habitats. At the marine site, both species explored the most abundant microalgae available (mostly the surf-zone diatom Asterionellopsis cf. guyunusae and fragments of Coscinodiscus), whereas in the estuary both species shifted their diets to explore the greater diversity of microalgae resources. Overall, our findings revealed that niche partitioning theory could not fully predict changes in breadth and overlap of food niches of estuarine dependent fish species with complex life cycles encompassing marine to estuarine systems with contrasting food availabilities.
In arid and semi-arid ecosystems, the presence of woody neighbours affects the existence of several herbaceous species by modifying critical aspects of the environment (e.g., soil humidity, nutrient content or light availability) beneath their canopies. Herbaceous species growing in the understory of Pinus pinaster may be distinct from those in open areas due to litter fall, light interception and changes in nutrient availability. We suggest that the overall effect of woody neighbours on herbaceous layer diversity may vary with the scale focus of analysis. To examine this hypothesis, we collected data on the abundance of herbaceous species in open pineland forests of the central Iberian Peninsula (Spain) using sample quadrats of 0.5 m × 0.5 m distributed beneath, at the edge, and outside the canopy of pines in a landscape composed of dunes and plains. The results of CCA ordination revealed significant spatial segregation of herbaceous species reflecting the occurrence of pines and dunes in the landscape. Nested ANOVA disclosed markedly lower species richness beneath the pines, particularly in the dune sites. Species richness partitioning showed higher pine-induced heterogeneity than expected from the sample-based randomized model, leading to significantly increased species richness at the patch level. Hence, the outcome of pine-induced effects on the herbaceous plant diversity is scale-dependent, negative if we focus on separate communities, but positive if the scale focus is extended to whole patches comprising the sum of communities beneath, at the edge, and outside pine tree canopies. These results emphasize the necessity of using various scale perspectives to clarify the different ways in which pines and other woody nurse species affect structure of herbaceous communities in semi-arid Mediterranean ecosystems.
The best alternative for reducing citrus production costs is mechanization. Machine vision is a reliable technology for the automatic inspection of fresh fruits and vegetables that can be adapted to harvesting machines. In these, fruits can be inspected before sending them to the packinghouse and machine vision provides important information for subsequent processing and avoids spending further resources in non-marketable fruit. The present work describes a computer vision system installed on a harvesting machine developed jointly by IVIA and a Spanish enterprise. In this machine, hand pickers directly drop the fruit as they collect it, which results in an important increase of productivity. The machine vision system is placed over rollers in order to inspect the produce, and separate those that can be directly sent to the fresh market from those that do not meet minimal quality requirements but can be used by the processing industry, based on color, size and the presence of surface damages. The system was tested under field conditions.
The effect of sequential treatments of pressure (50–150 MPa, 10 ºC, 5 min) and temperature (57 ºC, 15 min) on the survival and bacteriocin production of Pediococcus acidilactici HA-6111-2 cells in the exponential growth phase was assessed. The growth curves were fitted with the modified Gompertz model, and the estimated maximum specific growth rate was considered to be pressure dependent. A delay in the maximum value of bacteriocin production was registered for more severe pressure conditions, but it was found more notorious for pressure followed by temperature treatments. At lower pressure intensity treatment, regardless of the application order, there was an enhancement of bacteriocin production per cell when compared to the control while maintaining the maximum production value. Bacteriocin production after the treatments can be described by an exponential model.
Five elite blue maize hybrids and two blue maize landraces were evaluated for various quality characteristics. Hybrids showed physical characteristics demanded by dry-millers and tortilla processors: above 290 g in one hundred-kernel weight test, higher test weight (76.1–78.5 kg hl−1) and lower flotation index (22–61%). Hybrid maize 613 × 27 (9.9%) and 611 × 8 (9.5%) contained the highest protein. Potassium, magnesium, manganese and zinc contents of hybrid maize were higher than landraces by 15, 30, 55 and 41%, respectively. Nutrimental profile showed linoleic acid contents above 50% in 503 × 67, 613 × 27 and 611 × 8 hybrid samples. Lysine levels of landraces and hybrids 503 × 67 (33.9 g kg−1 protein) and 631 × 27 (31.7 g kg−1 protein) were higher than reported for regular white corn (27 g kg−1 protein), as well as the highest tryptophan levels for Chalqueno (6.0 g kg−1 protein) and hybrid 503 × 67 (6.9 g kg−1 protein). Highest protein quality based on its digestibility was found in hybrid 503 × 67. Results indicated that elite blue maize hybrids could be an important source of nutrimental compounds with potential for functional food industries.
Abstract
Tomato is rich in different bioactive compounds, especially the carotenoid lycopene, which intake is associated with various health benefits. Post-harvest use of ultraviolet light (UV) and light-emitting diode (LED) has been shown to increase the concentration of tomato bioactive compounds. The aim of this study was to evaluate the effect of ultraviolet (A and C) and red-blue LED light on the concentration of carotenoids during a 7-days storage trial of mature green tomatoes. Exposure to combined UV and LED light nearly doubled the total carotenoid concentration and had no negative impact on sensory attributes.
Banco Chinchorro is the largest reef in the Mexican Caribbean. Historically, spiny lobster, queen conch and over 20 other reef species have been exploited here. Multispecies intervention management from an ecosystem perspective has been developed in this area; however, an assessment of the effects of such practices on ecosystem health is required. Five quantitative trophic models were constructed using Ecopath with Ecosim. The results show that, in terms of biomass, benthic autotrophs are the dominant group in all communities. Ecosystem Network Analysis indices showed that Cueva de Tiburones was the most mature, developed, complex and healthy subsystem, but, El Colorado and La Baliza were the subsystems most resistant to disturbances. The fisheries mainly concentrate on primary (La Baliza and Cueva de Tiburones sites) and secondary consumers (La Caldera, Chancay, and El Colorado). The greatest propagation of direct and indirect effects, estimated by Mixed Trophic Impacts and Ecosim simulations, were generated by the benthic autotrophs, small benthic epifauna, benthic-pelagic carnivorous fish and benthic carnivorous fish, among others. In contrast, the System Recovery Time showed different patterns among subsystems, indicating several compartments that reduce resilience. Considering the structure, dynamics, trophic functioning and ecosystem health of Banco Chinchorro, its ecological heterogeneity highlights the need for the design of a specific (by subsystem) management strategy, particularly because different species or functional groups present greater sensitivity to human interventions in each community.