Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: J. Pan x
  • Medical and Health Sciences x
  • Refine by Access: All Content x
Clear All Modify Search

The present studies were conducted: (1) to determine which β-adrenoceptor subtypes are involved in progesterone and oxytocin (OT) secretion, (2) to examine whether noradrenaline (NA) acts directly on the cytochrome P-450scc and 3β-hydroxysteroid dehydrogenase (3β-HSD), and (3) to study the effect of prostaglandin F, (PGF) on NA-stimulated steroidogenesis in luteal cells. The effect of NA on progesterone secretion from luteal slices of heifers on days 8–12 of the oestrous cycle was blocked by both atenolol (β1-antagonist) and ICI 118.551 hydrochloride (β2-antagonist). OT secretion was blocked only after treatment with ICI 118.551 hydrochloride (P < 0.05). Dobutamine (10−4−10−6), a selective β1 agonist and salbutamol (10−4−10−6), a selective β2 agonist, both increased progesterone production (P < 0.01) with an efficiency comparable to that produced by NA (P < 0.01). The increase of OT content in luteal slices was observed only after treatment with salbutamol at the dose of 10−5M (P < 0.01). Dobutamine had no effect on OT production at any dose. A stimulatory effect of NA on cytochrome P-450scc activity (P < 0.05) was demonstrated using 25-hydroxycholesterol as substrate. 3β-HSD activity also increased following NA (P < 0.01) or pregnenolone (P < 0.05) and in tissue treated with pregnenolone together with NA (P < 0.01). PGF decreased progesterone synthesis (P < 0.05) and 3β-HSD activity (P < 0.01) in tissue treated with NA. We conclude that NA stimulates progesterone secretion by luteal β1- and β2-adrenoceptors, while OT secretion is probably mediated only via the β2-receptor. NA also increases cytochrome P-450scc and 3β-HSD activity. PGF inhibits the luteotropic effect of NA on the luteal tissue.

Restricted access

The role of oxytocin (OT) in the regulation of prostaglandin F (PGF ) secretion during luteolysis in gilts was studied using a highly specific OT antagonist (CAP-581). In Experiment 1 gilts on Days 14 to 19 of the oestrous cycle in Latin square design were used, to determine the dose and time of application of OT and CAP. In Group I (n = 6) gilts were treated intravenously with saline or with 10, 20 and 30 IU of OT. Concentrations of the main PGF metabolite i.e. 13,14-dihydro-15-keto-prosta-glandin F (PGFM) were measured in blood samples as uterine response to the treatment. Twenty IU of OT was the most effective to stimulate PGFM release and this dose was used after CAP treatment in gilts of Groups II, III and IV. Gilts of Group II (n = 3) were injected into the uterine horns (UH) with saline (5 ml/horn) or CAP (2 mg, 3 mg and 4 mg; half dose/horn) and OT was injected (i.v.) 30 min thereafter. Any of the CAP doses given into the UH affected PGFM plasma concentrations stimulated by OT. In Group III (n = 4) gilts were infused (i.v.) for 30 min with CAP (9 mg, 14 mg and 18 mg/gilt) followed by 20 IU of OT. All doses of CAP effectively inhibited OT-stimulated PGF release, therefore 9 mg was selected for the further studies. Gilts of Group IV (n = 4) received OT 4, 6 and 8 h after CAP to define how long CAP blocks the OT receptors. Concentrations of PGFM increased after any of this period of time. Thus, we concluded that 9 mg of CAP infused every 4 h will effectively block OT receptors. In Experiment 2, gilts (n = 4) received CAP as a 30-min infusion every 4 h on Days 12-20 of the oestrous cycle. Control gilts (n = 3) were infused with saline. CAP infusions diminished the height of PGFM peaks (P < 0.05). Frequency of the PGFM (P < 0.057) and OT (P < 0.082) peaks only tended to be lower in the CAP-treated gilts. Peripheral plasma concentrations of progesterone (P4) and oestradiol-17β (E2) and the time of luteolysis initiation as measured by the decrease of P4 concentration were the same in CAP-and saline-treated gilts. The macroscopic studies of the ovaries in gilts revealed lack of differences between groups. We conclude that OT is involved in the secretion of luteolytic PGF peaks but its role is limited to controlling their height and frequency. Blocking of OT receptors did not prevent luteolysis in sows.

Restricted access