Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: J. Ramanan x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The reactivity of preheated and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$- \mathop T\limits_|^| i^{4 + } - O - O - \mathop T\limits_|^| i^{4 + } -$$ \end{document}
species proposed on the surface of oxide probably dissociate into
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$- \mathop T\limits_|^| i^{4 + } - O$$ \end{document}
. surface sites which oxidize I ions to produce free I2. During irradiation
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$- \mathop T\limits_|^| i^{4 + } - O_{2ad}$$ \end{document}
and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathop T\limits_|^| i^{3 + } -$$ \end{document}
are produced which are reducing in nature and therefore very low yields of I2 are observed for low -doses. In further irradiation the reformation of –O–O–, peroxy linkages is proposed hence the observed higher yields. All the processes ultimately lead to an oscillatory variation in yields of I2 with -doses.
Restricted access

Abstract  

Several powder samples of TiO2 are pretreated thermally at 300, 480 and 540°C, subjected to -irradiation and after irradiation added in one of the compartment of the concentration cell made up of Ag/Ag+. The adsorbed oxygen species O 2ad , HO 2ad and O ad on TiO2 provide negatively charged sites and develop EMF in the cell. The radiation damage, measured in terms of equilibrium EMF, received at lower doses is partially recovered at higher doses. It is proposed that in heating at 480°C, ad species react with Ti3+ ions in the surface and produce –O–O– peroxy linkages and block the negatively charged sites while in heating at 540°C Ti4O7 phase is produced on the surface which adsorbs O2 and provide large number of negatively charged sites. During -irradiation peroxy linkages are broken and the Ti4O7 phase is destroyed. Observed oscillatory variation in equilibrium EMF is explained on the basis of several reactions mentioned above proceeding at different rates during radiolysis.

Restricted access