Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: K. Tóth x
  • Earth and Environmental Sciences x
  • Refine by Access: All Content x
Clear All Modify Search

Deterministic seismic hazard computations were performed along four different profiles across the downtown of Budapest. Synthetic seismograms were computed by the so called “hybrid technique”. By applying the hybrid technique it is possible to take into account the focal source, the path and the site effect together. Four independent computations have been performed using the same seismic source but different profiles. The parameters of the seismic source were adopted from the parameters of the well-known 1956 Dunaharaszti earthquake. The focal mechanism and the homogeneous and heterogeneous parts of the profiles are known from geophysical and geological data of the investigated area.As the results of the computations PGA (peak ground acceleration) grid maps of the downtown of Budapest for the three different components came into existence. Furthermore spectral acceleration (response spectra, SA) and RSR charts of the synthetic seismograms for the four different profiles were created. The PGA grid maps show that the maximal PGA values are situated at the eastern (Pest) part of the downtown, and their values are 50–200 cm/s 2 .For the downtown of Budapest a special seismic risk map have been prepared. This special seismic risk map were created on the basis of the difference between the maximal amplitude frequencies of SA of synthetic seismograms and the building’s eigenfrequencies at every 0.1 km 2 of the downtown. In order to determine the building’s eigenfrequencies microseismic noise measurement were performed at 6 different buildings in the downtown. The special seismic risk map shows that the buildings situated at the hilly western section of the downtown have higher seismic risk than the ones at the flat eastern part.

Restricted access

Parameters governing the retention and movement of water and chemicals in soils are notorious for the difficulties and high labor costs involved in measuring them. Often, there is a need to resort to estimating these parameters from other, more readily available data, using pedotransfer relationships.

This work is a mini-review that focuses on trends in pedotransfer development across the World, and considers trends regarding data that are in demand, data we have, and methods to build pedotransfer relationships. Recent hot topics are addressed, including estimating the spatial variability of water contents and soil hydraulic properties, which is needed in sensitivity analysis, evaluation of the model performance, multimodel simulations, data assimilation from soil sensor networks and upscaling using Monte Carlo simulations. Ensembles of pedotransfer functions and temporal stability derived from “big data” as a source of soil parameter variability are also described.

Estimating parameter correlation is advocated as the pathway to the improvement of synthetic datasets. Upscaling of pedotransfer relationships is demonstrated for saturated hydraulic conductivity. Pedotransfer at coarse scales requires a different type of input variables as compared with fine scales. Accuracy, reliability, and utility have to be estimated independently. Persistent knowledge gaps in pedotransfer development are outlined, which are related to regional soil degradation, seasonal changes in pedotransfer inputs and outputs, spatial correlations in soil hydraulic properties, and overland flow parameter estimation.

Pedotransfer research is an integral part of addressing grand challenges of the twenty-first century, including carbon stock assessments and forecasts, climate change and related hydrological weather extreme event predictions, and deciphering and managing ecosystem services.

Overall, pedotransfer functions currently serve as an essential instrument in the science-based toolbox for diagnostics, monitoring, predictions, and management of the changing Earth and soil as a life-supporting Earth system.

Restricted access

According to the Hungarian Soil Information and Monitoring System's (HSIMS) database a group estimation method was developed to predict the mean soil hydrophysical properties. The estimation efficiency of the worked out prediction procedures was controlled on a test database, and on a dataset of a study area. It can be established that the water retention and the hydraulic conductivity of soils are sufficiently predictable from the category data of soil maps. The 10-digit map codes of the PWW mapping method were created by different estimation methods, and as a result the PWW map was drawn. However, it is not always possible to estimate the necessary soil hydrophysical properties from the available map information for preparing the PWW map. Sometimes the knowledge gained from the field reports is needed as well. Further studies are planned for integrating these morphological information into our estimations.

Restricted access