Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: K.A. Thompson x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Recent attention to international safeguards has stimulated interest in nondestructive analysis techniques. These NDA techniques include high- and low-resolution gamma-ray spectrometry, active and passive neutron counting, and physical measurements. Often, the NDA measurements are made abroad under field conditions, and in these cases, portability is important. In other cases, the measurements are made under laboratory conditions but no calibration materials are available. This paper describes several NDA applications in support of international safeguards projects, all involving international cooperation.

Restricted access

Abstract  

A novel scintillating-fiber sensor for detecting high-energy beta particles has been designed and built at the Pacific Northwest Laboratory to characterize238U and90Sr in surface soils. High-energy betas generate unique signals as they pass through multiple layers of scintillating fibers that make up the active region of the detector. Lower-energy beta particles, gamma rays, and cosmic-ray-generated particles comprise the majority of the background interferences. The resulting signals produced by these latter phenomena are effectively discriminated against due to the combination of the sensor's multi-layer configuration and its interlayer coincidence/anti-coincidence circuitry.

Restricted access

Abstract  

A large area beta scintillation detector has been developed which is currently capable of determining Sr-90/Y-90 contamination in surficial soils. The detector system employs scintillating fiber optic arrays, with active dimensions approximately 15 cm wide by 100 cm long, both ends of which are coupled to multiple photomultiplier tubes (PMTs). Electronic processing includes coincidence requirements to optimize sensitivity and selectivity for the 2.28 MeV (maximum) beta particle from Y-90. Low energy beta particles and gamma rays are discriminated against using double ended and multi-layer coincidence requirements. The detector system is personal-computer-software controlled and data restored in a format compatible with standard database software for ease of final data reduction. Experimental calibration studies have shown a linear response for Sr-90/Y-90 soil concentrations from 12 to over 500 pCi/g and a discrimination factor of 50 to 1 versus Cs-137.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: T. Bowyer, K. Abel, C. Hubbard, A. McKinnon, M. Panisko, R. Perkins, P. Reeder, R. Thompson, and R. Warner

Abstract  

A fully automatic radioxenon sampler/analyzer (ARSA) has been developed and demonstrated for the collection and quantitative measurement of the four xenon radionuclides,131mXe(11.9 d),133mXe(2.2 d),133Xe(5.2 d), and135Xe(9.1 hr), in the atmosphere. These radionuclides are important signatures in monitoring for compliance to a Comprehensive Test Ban Treaty (CTBT). Activity ratios of these radionuclides permit source attribution. Xenon, continuously and automatically separated from the atmosphere, is automatically analyzed by electron-photon coincidence spectrometry providing a lower limit of detection of about 100 μBq/m3. The demonstrated detection limit is about 100 times better than achievable with reported laboratory-based procedures for the short-time collection intervals of interest.

Restricted access