Search Results

You are looking at 1 - 10 of 18 items for :

  • Author or Editor: L.Q. Li x
  • Biology and Life Sciences x
  • Refine by Access: All Content x
Clear All Modify Search

Leaf senescence is a notably important trait that limits the yield and biomass accumulation of agronomic crops. Therefore, determining the chromosomal position of the expression sequence tags (ESTs) that are associated with leaf senescence is notably interesting in the manipulation of leaf senescence for crop improvement. A total of 32 ESTs that were previously identified during the delaying leaf senescence stage in the stay-green wheat cultivar CN17 were mapped to 42 chromosomes, a chloroplast, a mitochondrion, and a ribosome using in silico mapping. Then, we developed 19 pairs of primers based on these sequences and used them to determine the polymorphisms between the stay-green cultivars (CN12, CN17, and CN18) and the control cultivar MY11. Among the 19 pairs of primers, 5 pairs produced polymorphisms between the stay-green cultivar and the non-stay-green control. Further studies of Chinese Spring nullisomic-tetrasomics show that JK738991 is mapped to 3B, JK738983 is mapped to 5D, and JK738989 is mapped to 2A, 4A, and 3D. The other two ESTs, JK738994 and JK739003, were not assigned to a chromosome using the Chinese Spring nullisomic-tetrasomics, which indicates that these ESTs may be derived from rye DNA in the wide cross. In particular, the ESTs that produce polymorphisms are notably useful in identifying the stay-green cultivar using molecular marker-assisted selection. The results also suggest that the in silico mapping data, even from a comparison genomic analysis based on the homogeneous comparison, are useful at some points, but the data were not always reliable, which requires further investigation using experimental methods.

Restricted access

Saccharomyces cerevisiae MERIT.ferm was used as mono- and mixed-cultures with Williopsis saturnus var. mrakii NCYC500 in mango wine fermentation. A ratio of 1:1000 (Saccharomyces:Williopsis) was chosen for mixed-culture fermentation to enable longer persistence of the latter. The monoculture of S. cerevisiae and mixed-culture was able to ferment to dryness with 7.0% and 7.7% ethanol, respectively. The monoculture of W. mrakii produced 1.45% ethanol. The mango wines fermented by S. cerevisiae alone and the mixed-culture were more yeasty and winey, which reflected their higher amounts of fusel alcohols, ethyl esters and medium-chain fatty acids. The mango wine fermented by W. mrakii alone was much less alcoholic, but fruitier, sweeter, which corresponded to its higher levels of acetate esters.

Restricted access

Optimization of extraction ratio (ER) of tree peony seed protein (TPSP) was investigated using response surface methodology (RSM). The second-degree equation for ER of TPSP had high coeffi cient (0.9625) of determination. The probability (P) value of regression model signifi cance was less than 0.001 by analysis of central composite rotatable design. Relationships of ER to pH, liquid/solid ratio, squares of all factors, and cross-product factors (x2x3, x2x4, x3x4) were signifi cant (P<0.05). Whereas, extraction time, temperature, and cross-product terms (x1x2, x1x3, x1x4) were not signifi cant factors (P>0.05). Optimum extraction conditions were 3.42 h, pH 9.50, 50.80 ºC, and 9.54 ml g–1 of liquid/solid ratio with the maximum ER (43.60%) . SDS-PAGE indicated TPSP had mainly four proteins (180, 100, 60, and 35 kDa) with four subunits of 60, 48, 38, and 23 kDa. TPSP had a good amino acid composition with abundant essential amino acids (39.76%) determined by amino acid analysis.

Restricted access
Cereal Research Communications
Authors:
N. Zhang
,
R.Q. Pan
,
J.J. Liu
,
X.L. Zhang
,
Q.N. Su
,
F. Cui
,
C.H. Zhao
,
L.Q. Song
,
J. Ji
, and
J.M. Li

Plants with deficiency in Gibberellins (GAs) biosynthesis pathway are sensitive to exogenous GA3, while those with deficiency in GAs signaling pathway are insensitive to exogenous GA3. Thus, exogenous GA3 test is often used to verify whether the reduced height (Rht) gene is involved in GAs biosynthesis or signaling pathway. In the present study, we identified the genetic factors responsive to exogenous GA3 at the seedling stage of common wheat and analyzed the response of the plant height related quantitative trait loci (QTL) to GA3 to understand the GAs pathways the Rht participated in. Recombinant inbred lines derived from a cross between KN9204 and J411 with different response to exogenous GA3 were used to screen QTL for the sensitivity of coleoptile length (SCL) and the sensitivity of seedling plant height (SSPH) to exogenous GA3. Two additive QTL and two pairs of epistatic QTL for SCL were identified, meanwhile, two additive QTL and three pairs of epistatic QTL for SSPH were detected. For the adult plant height (PH) investigated in two environments, six additive QTL were identified. Three QTL qScl-4B, qSsph-4B and qPh-4B were mapped in one cluster near the functional marker Rht-B1b. When PH were conditional on SSPH, the absolute additive effect value of qPh-4B and qPh-6B were reduced, suggesting that the Rhts in both two QTL were insensitive to exogenous GA3, while the additive effect values of qPh-2B, qPh-3A, qPh-3D and qPh-5A were not significantly changed, indicating that the Rhts in these QTL were sensitive to exogenous GA3, or they were not expressed at the seedling stage.

Restricted access
Cereal Research Communications
Authors:
Z. L. Li
,
D. D. Wu
,
H. Y. Li
,
G. Chen
,
W. G. Cao
,
S. Z. Ning
,
D. C. Liu
, and
L. Q. Zhang

Gliadin is a main component of gluten proteins that affect functional properties of bread making and contributes to the viscous nature of doughs. In this study, thirteen novel ω-gliadin genes were identified in several Triticum species, which encode the ARH-, ATDand ATN-type proteins. Two novel types of ω-gliadins: ATD- and ATN- have not yet been reported. The lengths of 13 sequences were ranged from 927 to 1269 bp and the deduced mature proteins were varied from 309 to 414 residues. All 13 genes were pseudogenes because of the presence of internal stop codons. The primary structure of these ω-gliadin genes included a signal peptide, a conserved N-terminal domain, a repetitive domain and a conserved C-terminus. In this paper, we first characterize ω-gliadin genes from T. timopheevi ssp. timopheevi and T. timopheevi ssp. araraticum. The ω-gliadin gene variation and the evolutionary relationship of ω-gliadin family genes were also discussed.

Restricted access

Molecular markers are important tools that have been used to identify the short arm of rye chromosome 1R (1RS) which contains many useful genes introgressed into wheat background. Wheat expressed sequence tag (EST) sequences are valuable for developing molecular markers since ESTs are derived from gene transcripts and more likely to be conserved between wheat and its relative species. In the present study, 35 sequence-tagged site (STS) primers were designed based on EST sequences distributed on homology group 1 chromosomes of Triticum aestivum and used to screen specific markers for chromosome 1RS of Secale cereale . Two primer pairs different from the early studies, STS WE3 , which amplified a 1680-bp and a 1750-bp fragment, and STS WE126 , which produced a 850-bp fragment from rye genome, were proved to be specific to chromosome 1RS since the corresponding fragments were only amplified from 1R chromosome addition line and wheat-rye lines with chromosome 1RS, but not from wheat-rye 2R-7R chromosome addition lines and the other lines lacking chromosome 1RS. Eleven wheat-rye lines derived from ‘Xiaoyan 6’ and ‘German White’ were used to test the presence of specific markers for 1RS. The specific fragments of 1RS were amplified in 4 wheat-rye lines, but not in the other lines. The testing results using EST-STS markers of 1RS were consistent with those obtained from fluorescence in situ hybridization (FISH), suggesting that these markers specific to 1RS could be used in marker-assisted selection (MAS) for incorporating 1RS into wheat cultivars in breeding.

Restricted access

Analysis of the binding interaction of (−)-epigallocatechin-3-gallate (EGCG) and pepsin is important for understanding the inhibition of digestive enzymes by tea polyphenols. We studied the binding of EGCG to pepsin using fluorescence spectroscopy, Fourier transform infrared spectroscopy, isothermal titration calorimetry, and protein-ligand docking. We found that EGCG could inhibit pepsin activity. According to thermodynamic parameters, a negative ΔG indicated that the interaction between EGCG and pepsin was spontaneous, and the electrostatic force accompanied by hydrophobic binding forces may play major role in the binding. Data from multi-spectroscopy and docking studies suggest that EGCG could bind pepsin with a change in the native conformation of pepsin. Our results provide further understanding of the nature of the binding interactions between catechins and digestive enzymes.

Restricted access

The objective of this work was to research the antibacterial effects of orange pigment, which was separated from Monascus pigments, against Staphylococcus aureus. The increase of the diameter of inhibition zone treated with orange pigment indicated that orange pigment had remarkable antibacterial activities against S. aureus. Orange pigment (10 mg ml−1) had a strong destructive effect on the membrane and structure of S. aureus by the analysis of scanning electron microscopy as well as transmission electron microscopy. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) further demonstrated that the cell membrane was seriously damaged by orange pigment, which resulted in the leakage of protein from S. aureus cells. A significant decrease in the synthesis of DNA was also seen in S. aureus cells exposed to 10 mg ml−1 orange pigment. All in all, orange pigment showed excellent antibacterial effects against S. aureus.

Restricted access

The aim of this study was to investigate the effects of maternal lead exposure on the learning and memory ability and expression of tau protein phosphorylation (P-tau) and beta amyloid protein (Aβ) in hippocampus of mice offspring. Pb exposure initiated from beginning of gestation to weaning. Pb acetate administered in drinking solutions was dissolved in distilled deionized water at the concentrations of 0.1%, 0.5% and 1% groups. On the 21 th of postnatal day, the learning and memory ability of the mouse pups was tested by Water Maze test and the Pb levels in blood and hippocampus of the offspring were also determined. The expression of P-tau and Aβ in hippocampus was measured by immunohistochemistry and Western blotting. The Pb levels in blood and hippocampus of all exposure groups were significantly higher than that of the control group ( P < 0.05). In Water Maze test, the performances of 0.5% and 1% groups were worse than that of the control group ( P < 0.05). The expression of P-tau and Aβ was increased in Pb exposed groups than that of the control group ( P < 0.05). Tau hyper-phosphorylation and Aβ increase in the hippocampus of pups may contribute to the impairment of learning and memory associated with maternal Pb exposure.

Restricted access
Cereal Research Communications
Authors:
Z.L. Li
,
H.Y. Li
,
G. Chen
,
X.J. Liu
,
C.L. Kou
,
S.Z. Ning
,
Z.W. Yuan
,
M. Hao
,
D.C. Liu
, and
L.Q. Zhang

Seven Glu-A1 m allelic variants of the Glu-A1 m x genes in Triticum monococcum ssp. monococcum, designated as 1Ax2.1 a , 1Ax2.1 b , 1Ax2.1 c , 1Ax2.1 d , 1Ax2.1 e , 1Ax2.1 f , and 1Ax2.1 g were characterized. Their authenticity was confirmed by successful expression of the coding regions in E. coli, and except for the 1Ax2.1 a with the presence of internal stop codons at position of 313 aa, all correspond to the subunit in seeds. However, all the active six genes had a same DNA size although their encoding subunits showed different molecular weight. Our study indicated that amino acid residue substitutions rather than previously frequently reported insertions/deletions played an important role on the subunit evolution of these Glu-A1 m x alleles. Since variation in the Glu-A1x locus in common wheat is rare, these novel genes at the Glu-A1 m x can be used as candidate genes for further wheat quality improvement.

Restricted access