Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: M. Ashraf x
  • Materials and Applied Sciences x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

The present manuscript demonstrates the work undertaken to optimise and validate a slow-release amylase-assisted extraction of polyphenols from peach fruit peel. A careful investigation and optimisation revealed that peach peel when hydrolysed with 1.50% (w/w) of SRA containing enzyme formulation at 40 °C and 6.1 pH, for 35 min significantly (P < 0.05) increased the extraction yield, levels of polyphenol contents (242.89 ± 1.56 mg gallic acid equivalents – GAE), and coumaric, chlorogenic, ferulic acids or their conjugate esters in extracts. Moreover, the extracts produced through SRA-assisted extraction exhibited ample level of free radical scavenging capacity (DPPH IC50 2.67 ± 0.03 μg mL−1), Trolox equivalent (TE) antioxidant capacity (450.52 ± 24.58 µmol of TE g−1), inhibition of peroxides in linoleic acid (85.68 ± 0.21%), and ferric reducing power of 3.11 ± 0.20 ppm gallic acid equivalents. The results suggested that the incorporation of SRA containing enzyme formulation may enhance the recovery of peach peel polyphenols while hydrolysing the glycosidic linkages without deteriorating their antioxidant character.

Restricted access
Pollack Periodica
Authors:
Ammar Jalil Almosawi
,
Ashraf A. M. R. Hiswa
, and
Tawfek Sheer Ali

Abstract

Prying force formation at bolts is considered as an important problem in steel connection design. It affects the connection bearing capacity, ductility and serviceability negatively by increasing stresses induced inside connections. In the present work, behavior of steel connection under prying force is studied. A connection of steel beam-column has been modeled using software Revit program. Tension load is applied increasingly and the connection displacement has been measured until failure. Finite element simulation of steel angles under the effect of tension load and prying force has been studied. It is found that the connection has three phases of bearing behavior. Plastic hinge formation noticed increased with prying force presence.

Restricted access

Abstract

The influence of utilizing waste concrete aggregates on the flexural behavior of external reinforced concrete beams has been studied. Seven mixtures were prepared for this investigation where the concrete mixtures had different waste concrete percentages and admixtures. Also, seven beams were modeled by Ansys program and the properties of the seven mixtures have been used in the models to study their effects. It was found that using waste concrete aggregates has decreased the load bearing capacity and concrete ductility. It was found that the beam bearing capacity was decreased by 10.7% when using only waste concrete. Using admixtures have enhanced the concrete properties where the load capacity of beams has been increased by 39% when using silica fume and superplasticizer and the load capacity has increased by 44.6% when multi-admixtures have been used. Besides, it was found that using additives has enhanced the beam ductility significantly.

Open access