Search Results

You are looking at 1 - 10 of 27 items for :

  • Author or Editor: M. Ebihara x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

In order to determine the trace amounts (3 ng–100 ng) of lanthanoids in chondritic meteorites, new and convenient analytical procedures of radiochemical neutron activation method were presented. Applying these procedures to Antarctic meteorites, a total of ten lanthanoids (La, Ce, Nd, Sm, Eu, Gd, Tb, Tm, Yb, and Lu) were precisely determined in a sample of 50–100 mg. Considering several error sources such as counting statistics, collection of interferences, and determination of chemical yield, magnitude of overall error was estimated for each element.

Restricted access

Abstract  

A modified NiS fire-assay neutron activation method is developed for the determination of all platinum-group elements (PGEs) in mantle-derived xenoliths. This method is characterized by sub-ppb detection limits, <0.1~0.002 ppb procedural blanks and 7~15% analytical precision for PGEs. Analyses of PGE standard rocks indicate that this modified NiS fire-assay neutron activation method is as reliable as the method previously proposed for a large scale of samples. The capability of the method for the measurement of PGEs in the upper mantle is also illustrated by some exciting results obtained from mantle-derived xenoliths of Eastern China.

Restricted access

Abstract  

We determined uranium in silicate materials such as standard rocks and a meteorite by radiochemical neutron activation analysis. After activation with a cadmium cover, samples were subjected to radiochemical separation of uranium immediately. The gamma-ray intensity of239U was measured with a planar type pure germanium detector system. Our data are mostly consistent with the literature or reported values. Compared with a non-destructive method, the present method was found to improve the sensitivity by at least a factor of ten. Several errors which might be involved in our RNAA procedures were examined and their degrees were evaluated.

Restricted access

Abstract  

An analytical scheme of radiochemical neutron activation for the sequential determination of ultra-trace rare earth elements (REEs) and highly siderophile elements (HSEs) in geological and cosmochemical samples is presented. Using this procedure, several selected elements of REEs and HSEs were successively determined for geological reference samples and olivine crystals separated from pallasite meteorites. Based on the data for geological reference samples, it was concluded that the procedure presented in this study could yield data usable for cosmochemical discussion of the genesis of pallasite meteorites.

Restricted access

Abstract  

A simple and effective radiochemical procedure for radiochemical neutron activation analysis (RNAA) of ultra-trace siderophile elements (Ru, Re, Os and Ir) and rare earth elements (REEs) in rock and meteorite samples is presented. To design the procedure, several separation schemes of siderophile elements were examined by using radioactive tracers. By applying the procedure to rock and meteorite samples, we have determined Ru, Re, Os, Ir and REEs, and confirmed that our values were in agreement with the literature values. Our detection limits for Ru, Re, Os, La, Sm and Eu are significantly low compared with those for ICP-MS.

Restricted access

Abstract  

Simple and effective procedures for the determination of Re, Os and Ir by radiochemical neutron activation analysis are presented. Those elements are separated individually by distillation (for Os) and anion exchange techniques (for Re and Ir) for a single specimen. Reproducibilities of the data obtained by the present procedures are evaluated by replicate analyses of the Allende meteorite sample, and are deduced to be 3% for Re, 6% for Os and 4% for Ir (1). Detection limits for the present procedures are calculated to be 1 ppb for Re, 20 ppb for Os and 5 ppb for Ir. These procedures were applied to Antarctic meteorites and proved to work very effectively for the determination of trace Re, Os and Ir in chondrite meteorites.

Restricted access

Abstract  

In order to determine thorium and uranium traces in geochemical and cosmochemical samples, we developed an ICP-MS procedure, in which an anion-exchange step was introduced after sample digestion to separate major matrix elements, leading to decrease the dilution factor and increase the sensitivity for Th and U. The ICP-MS procedure was compared to the RNAA procedure which we recently developed for the same purpose. Both ICP-MS and RNAA procedures developed were found to yield similar detection limits (sub ppb) for Th and U.

Restricted access

Abstract  

Prompt gamma-ray analysis was applied to determine hydrogen in geological samples. In order to obtain accurate values, blank values were estimated and subtracted. Samples were dried to constant weight in an oven. Helium gas was introduced into the sample box to purge the air containing moisture during the measurement. Hydrogen contents in some geochemical standard samples were determined and highly reproducible values were obtained.

Restricted access

Abstract  

Nickel sulfide (NiS) fire assay was used for the pre-concentration of Ir and Au in rock samples. The beads obtained after fire assay were irradiated directly with neutrons to determine Ir and Au. To suppress the reaction of 58Ni(n,p)58Co, the fire assay was carried out by using a small amount of Ni (0.0625 g) and the NiS bead samples were irradiated by neutrons with high Cd ratios. Analytical results of Ir and Au for rock samples were close to literature values, confirming that our procedure of INAA with pre-concentration can be applied to rock samples for the determination of ppb to sub-ppb level of Ir and Au.

Restricted access

Abstract  

Applying rapid radiochemical separation of iodine coupled with epithermal neutron activation, we reliably determined trace amounts /6–95 ng/ of iodine in rock samples such as sedimentary rocks and chondritic meteorites. Our data on meteorites are in good agreement with literature values, but for sedimentary rocks the present data were systematically lower than the literature values. Based on the data from duplicate analyses of some sedimentary rocks and the results of tracer experiments employed parallel to the rock analyses, we concluded that the analytical results obtained in this work for sedimentary rocks were more reliable than the literature values.

Restricted access