Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Madhu Dadhwal x
  • Mathematics and Statistics x
  • Refine by Access: All Content x
Clear All Modify Search

In this paper, centralizing (semi-centralizing) and commuting (semi-commuting) derivations of semirings are characterized. The action of these derivations on Lie ideals is also discussed and as a consequence, some significant results are proved. In addition, Posner’s commutativity theorem is generalized for Lie ideals of semirings and this result is also extended to the case of centralizing (semi-centralizing) derivations of prime semirings. Further, we observe that if there exists a skew-commuting (skew-centralizing) derivation D of S, then D = 0. It is also proved that for any two derivations d 1 and d 2 of a prime semiring S with char S ≠ 2 and x d 1 x d 2 = 0, for all xS implies either d 1 = 0 or d 2 = 0.

Open access