Search Results

You are looking at 1 - 10 of 16 items for :

  • Author or Editor: Meng Zhang x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Highly oriented single crystal antimony nanowire arrays have been synthesized within anodic aluminum oxide (AAO) template by pulsed electrodeposition. Thermal behavior and oxidation analysis of the antimony nanowires have been investigated by means of thermogravimetry and differential scanning calorimetry in Ar and air atmosphere, respectively. Compared to bulk antimony, the antimony nanowires exhibit a lower sublimation temperature at 496.4°C. Evident oxidation of the Sb nanowires occurs at 429.8°C in air atmosphere and α-Sb2O4 nanowires have been obtained as the oxidation product. The results indicate that the sublimation and the oxidation of the antimony nanowires in the AAO template is a slow multi-step process. The present results are of relevance when processing antimony nanowries for thermoelectric applications at high temperatures.

Restricted access

Abstract  

A computerized adiabatic calorimeter for heat capacity measurements in the temperature range 80–400 K has been constructed. The sample cell of the calorimeter, which is about 50 cm3 in internal volume, is equipped with a platinum resistance thermometer and surrounded by an adiabatic shield and a guard shield. Two sets of 6-junction chromel-copel thermocouples are mounted between the cell and the shields to indicate the temperature differences between them. The adiabatic conditions of the cell are automatically controlled by two sets of temperature controller. The reliability of the calorimeter was verified through heat capacity measurements on the standard reference material α-Al2O3. The results agreed well with those of the National Bureau of Standards (NBS): within 0.2% throughout the whole temperature region. The heat capacities of high-purity graphite and polystyrene were precisely measured in the interval 260–370 K by using the above-mentioned calorimeter. The results were tabulated and plotted and the thermal behavior of the two materials was discussed in detail. Polynomial expressions for calculation of the heat capacities of the two substances are presented.

Restricted access

A new high-performance thin-layer chromatographic (HPTLC) method has been developed for the simultaneous estimation of astragaloside IV and formononetin in Radix Astragali. Samples were employed to degrease the materials by petroleum ether (boiling point: 60–90°C) and extracted by methanol, and then were alkalized and extracted with n-butanol saturated with water. Separation was achieved on HPTLC plates using petroleum ether (boiling point: 60–90°C) and n-butanol saturated with water-glacial acetic acid as the mobile phase, the results of which were compared with HPLC. The well-resolved peaks for astragaloside IV and formononetin were observed at RF values 0.43 ± 0.02 and 0.75 ± 0.02, respectively. The calibration curves were found linear with a wide range of concentration 1.01–10.10 μg μL−1 with good correlation coefficient for astragaloside IV and formononetin. The method was validated for linearity, precision, reproducibility, accuracy, and limits of detection and quantification. This simple, rapid, sensitive, economic, and reliable HPTLC method is suitable for the routine quantitative analysis and quality control of traditional Chinese medicines (TCMs) such as Radix Astragali, which can be applied for the quality control of saponins and flavonoids in other plants or extracts.

Restricted access

The newly emerged chromatographic fngerprint analysis represents a rational approach assessment of Traditional Chinese Medicine (TCM) and its preparations. In the present paper, a quick and reliable analytical method was developed for the quality assessment of QiYi capsules (QY) using high-performance thin-layer chromatography (HPTLC) with the reference of Tripterygium wilfordii. The unique properties of the HPTLC fngerprint were validated by analyzing 10 batches of QY samples. The 9 common peaks of the HPTLC images of QY and the different RF and peak area ratios of the chemical distribution could directly discern the stability by comparison of 10 samples, and also, the 9 common peaks were selected to evaluate the similarities of QY; the similarities of 10 batches of QY were more than 0.960, which indicated a standardized consistency and reliable quality of QY. Therefore, the newly developed HPTLC fngerprint method provided an easy way for sample characterization and differentiation; it allowed for the quality assessment of QY capsules with the reference of T. wilfordii.

Restricted access

Abstract  

The importance of angiogenesis in tumor growth and metastasis has led to develop new imaging tracers to understand angiogenic vasculature. Based on the previous study, we further focused on the tumor molecular imaging application of the novel peptide Arginine-Arginine-Leucine (Tyr-Cys-Gly-Gly-Arg-Arg-Leu-Gly-Gly-Cys, tRRL) in this study. The cytotoxicity of raioiodinated tRRL (131I-tRRL) in HepG2 cells was assessed by tested cell viability using kit. tRRL was conjugated with fluorescein FITC to observe its binding with tumor cells and human aortic endothelial cells (HAEC) in vitro. Whole body SPECT imaging of varied tumors xenograftes was performed after intravenous injection of 131I-tRRL for 24 h in BALB/c nude mice. Compared with negative control PBS, small peptide tRRL was of non-cytotoxicity. 131I-tRRL could lead to significant cytotoxicity on HepG2 cells when the radioactivity was greater than 370 kBq. In vitro binding experiment and cellular uptake results revealed that tRRL could adhere to tumor cells besides tumor derived endothelial cells. In vivo SPECT imaging, 131I-tRRL mainly accumulated in various tumor tissues, including melanoma, liver cancer and lung cancer bearing mice. In breast cancer xenografte imaging, the tumor has no significant radionuclide accumulation at 24 h after injected of 131I-tRRL. Radioiodinated tRRL offers a noninvasive nuclear imaging method for functional molecular imaging of tumors, and may be a promising candidate carrier for tumor targeted therapy.

Restricted access

Abstract  

The heat capacities (C p,m) of 2-amino-5-methylpyridine (AMP) were measured by a precision automated adiabatic calorimeter over the temperature range from 80 to 398 K. A solid-liquid phase transition was found in the range from 336 to 351 K with the peak heat capacity at 350.426 K. The melting temperature (T m), the molar enthalpy (Δfus H m 0), and the molar entropy (Δfus S m 0) of fusion were determined to be 350.431±0.018 K, 18.108 kJ mol−1 and 51.676 J K−1 mol−1, respectively. The mole fraction purity of the sample used was determined to be 0.99734 through the Van’t Hoff equation. The thermodynamic functions (H T-H 298.15 and S T-S 298.15) were calculated. The molar energy of combustion and the standard molar enthalpy of combustion were determined, ΔU c(C6H8N2,cr)= −3500.15±1.51 kJ mol−1 and Δc H m 0 (C6H8N2,cr)= −3502.64±1.51 kJ mol−1, by means of a precision oxygen-bomb combustion calorimeter at T=298.15 K. The standard molar enthalpy of formation of the crystalline compound was derived, Δr H m 0 (C6H8N2,cr)= −1.74±0.57 kJ mol−1.

Restricted access

Abstract  

On the basis of the theory of thermokinetics proposed in the literature, a novel thermokinetic method for determination of the reaction rate, the characteristic parameter method, is proposed in this paper. Mathematical models were established to determine the kinetic parameters and rate constants. In order to test the validity of this method, the saponifications of ethyl benzoate, ethyl acetate and ethyl propionate, and the formation of hexamethylenetetramine were studied with this method. The rate constants calculated with this method are in agreement with those in the literature, and the characteristic parameter method is therefore believed to be correct.In the light of the characteristic parameter method, we have developed further two thermo-kinetic methods, the thermoanalytical single and multi-curve methods, which are convenient for simultaneous determination of the reaction order and the rate constant. The reaction orders and rate constants of the saponifications of ethyl acetate and ethyl butyrate and the ring-opening reaction of epichlorohydrin with hydrobromic acid were determined with these methods, and their validity was verified by the experimental results.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors:
Zhen Chen
,
Huan Meng
,
Hui Yuan
,
Gengmei Xing
,
Chunying Chen
,
Feng Zhao
,
Yun Wang
,
Chengcheng Zhang
, and
Yuliang Zhao

Abstract  

Nanosized copper particles are widely used in fields of lubricants, polymers/plastic, metallic coating and ink. Recently, we found that copper particles in different sizes can lead to different toxicological effects. To clarify the target organs of copper particles of different sizes, the inductively coupled plasma mass spectroscopy (ICP-MS) was employed to evaluate the distribution of copper in different organs of mice after a single dose oral exposure. The results suggest that the main target organs for copper nanoparticles are kidney, liver and blood. Liver is the main damaged organ.

Restricted access

Abstract  

Isoproturon [N'-(p-cumenyl)-N,N-dimethylurea] was synthesized, and the low-temperature heat capacities were measured with a small sample precise automatic adiabatic calorimeter over the temperature range from 78 to 342 K. No thermal anomaly or phase transition was observed in this temperature range. The melting and thermal decomposition behavior of isoproturon was investigated by thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). The melting point and decomposition temperature of isoproturon were determined to be 152.4 and 239.0C. The molar melting enthalpy, and entropy of isoproturon, ΔH m and ΔS m, were determined to be 21.33 and 50.13 J K-1 mol-1, respectively. The fundamental thermodynamic functions of isoproturon relative to standard reference temperature, 298.15 K, were derived from the heat capacity data.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors:
Huan Meng
,
Zhen Chen
,
Gengmei Xing
,
Hui Yuan
,
Chunying Chen
,
Feng Zhao
,
Chengcheng Zhang
,
Yun Wang
, and
Yuliang Zhao

Abstract  

Recently, it was reported that the toxicity of copper particles increases with the decrease of the particle size on a mass basis. To understand this phenomenon, inductively coupled plasma mass spectrometry (ICP-MS) techniques and in vitro chemical studies were carried out to explore how they produce toxicity in vivo. The results suggest that when the sizes of particles become small and down to a nanoscale, copper becomes extremely reactive in a simulative intracorporeal environment. The nanosized copper particles consume the hydrogen ions in stomach more quickly than micron ones. These processes further convert the copper nanoparticles into cupric ions whose toxicity is very high in vivo.

Restricted access