Search Results
You are looking at 1 - 7 of 7 items for :
- Author or Editor: N. Jain x
- Biology and Life Sciences x
- Refine by Access: All Content x
Effect of different doses of nitrogen (N) (90, 120, 150 and 180 kg Nha–1) on the activities of aminotransferases and alkaline inorganic pyrophosphatase (AIP) in relation to the accumulation of proteins, amino acids and sugars in roots and internodes at 15 and 40 days post anthesis (DPA) stages was studied in six wheat genotypes namely HD 2967, GLU 1101, PBW 343, BW 9022, PH-132-4840 and PBW 550. Supra-optimal N doses (150 kg Nha–1 and 180 kg Nha–1) accentuated glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT) and alkaline inorganic pyrophosphatase activities in correspondence with an increase in amino acid, protein and sugar content in both roots and internodes in all the six genotypes. Activities of analyzed enzymes were significantly high at 15 days post anthesis (DPA) stage and thereafter declined at maturity (40 DPA) in parallel with decrease in amino acid contents. Maximum activity of GOT, GPT and AIP was observed in HD 2967 and GLU 1101 genotypes along with higher build up of proteins and amino acids which resulted in higher grain yield. Activity of GPT was comparatively high over GOT, indicating its major role towards protein synthesis. Grain filling processes in terms of proteins and amino acids were positively correlated with GOT and GPT activities while sugars were correlated to AIP. Thus, nitrogen acquisition and assimilation resulted in favoured utilization of N in form of amino acid and proteins accumulation while sugar content was also stimulated. Due to immense activities of aminotransferases and higher contents of amino acids and proteins in GLU 1101 and HD 2967 genotypes at optimal dose and higher dose of N, these genotypes hold future potential for developing new cultivars with better grain quality characteristics.
Field experiments were conducted over two years under low input conditions to know the influence of bio-inoculants, namely arbuscular mycorrhiza fungi (AMF, Glomus fasciculatum ) and Azotobacter chroococcum (Azc) on the performance and gene effects for important root and plant characters in three crosses of wheat (WH147×WH157, WH147×PBW175 and WH147×WH542). Six generations representing P 1 , P 2 , F 1 , F 2 , BC 1 and BC 2 populations of each cross were grown in randomized block design with three replications. The estimate of means (m) indicated that bio-inoculants enhanced the mean performance of most of the characters and root length density and grain yield in some crosses only. Crop season also showed considerable effect on impact of bio-inoculants. The joint scaling test revealed adequacy of additive-dominance model of gene effects for root biomass, root length density, flag leaf area, tillers/plant, grain weight and grain yield in all the crosses and bio-inoculants treatments in both years. The AMF treatment brought about changes in the magnitude and significance of additive component for root biomass, plant height, flag leaf area in all the three crosses. Both additive (d) and dominance (h) components were affected with respect to grain yield in WH147×WH157 and WH147×WH542. The dominant component was important for tillers/plant, grain yield, root length in control, as well as bio-inoculants treated populations of WH147×PBW175 but treatment of AMF and AMF+ Azc reduced the magnitude of h and increased the magnitude of d. Digenic interactions were prominent for grains/spike in WH147×WH157. Magnitude of digenic interactions was higher under bio-inoculation. Simple pedigree and bulk pedigree methods are suggested to capitalize on adequate additive gene effects for developing bio-inoculants responsive wheat genotypes.
The present investigation was conducted to investigate the impact of bio-inoculants on the magnitude and direction of gene effects and mean performance for root length density, root biomass per plant, AMF colonization in roots and micronutrient uptake (Cu, Fe, Mn, Zn) in wheat under low input field conditions. The material for study comprised three wheat cultivars, WH 147 (low mineral input), WH 533 (drought-tolerant), Raj 3077 (high mineral input) and six generations (P 1 , P 2 , F 1 , F 2 , BC 1 and BC 2 ) of three crosses, namely WH 147 × WH 533, WH 533 × Raj 3077 and WH 147 × Raj 3077. The experiment was conducted in a randomized block design with three replications having three treatments, i.e. (i) control; (ii) inoculation with arbuscular mycorrhizal fungi (AMF, Glomus fasciculatum ); (iii) dual inoculation with AMF and Azotobacter chroococcum ( Azc ). The fertilizer doses in all three treatments were 80 kg N + 40 kg P + 18 kg ZnSO 4 ha −1 . Root length density, root biomass per plant, AMF colonization in roots and Zn and Mn content were found to be maximum after dual inoculation with AMF+ Azc in all three crosses. Joint scaling tests revealed that additive-dominance gene effects were mainly operative in governing the expression of root biomass, Cu and Zn content in all three crosses for all three treatments (i.e. control, AMF and AMF + Azc ). Pedigree selection in crosses WH 147 × WH 533 and WH 147 × Raj 3077 could be effective for breeding pure lines of wheat for sustainable agriculture (low input genotypes responsive to biofertilizers such as AMF and Azotobacter ).
The present investigation was conducted to study the impact of bio-inoculants under low input field conditions on the magnitude and direction of gene effects and the mean performance of nitrogen (N) and phosphorus (P) use in wheat. Three wheat cultivars suitable for different agro-ecological conditions, i.e. WH 147 (low mineral input), WH 533 (water deficit), Raj 3077 (high mineral input), and six generations (P 1 , P 2 , F 1 , F 2 , BC 1 and BC 2 ) of three crosses, namely WH 147 × WH 533, WH 533 × Raj 3077 and WH 147 × Raj 3077, were evaluated in a randomized block design with three replications under low input field conditions (80 kg N + 40 kg P + 18 kg ZnSO 4 doses applied in each treatment) with three treatments, i.e. control, inoculation with arbuscular mycorrhiza fungi (AMF, Glomus fasciculatum ) and dual inoculation with AMF and Azotobacter chroococcum ( Azc ). Bioinoculation with AMF and AMF+ Azc had a positive impact on the mean performance of all the wheat crosses. The mean performance of AMF was maximum in the cross WH 147 × WH 533 for N and P response (%), N and P use index (%) and P content (ppm), whereas for N and P uptake it was maximum in the cross WH 147 × Raj 3077. The response and use index for N and P were better in the combined AMF+ Azc treatment in all three crosses. The adequacy of the additive-dominance model for the phosphorus uptake (mg/plant) by all three crosses in all three treatments (i.e. control, AMF, AMF+ Azc ) suggested that additive (d) and dominance (h) gene effects mainly governed the inheritance of this trait. In all cases, digenic interactions were present, where the duplicate type of epistasis prevailed except for the P content in the control in the cross WH 147 × WH 533, where the complementary type of interaction was present. Pedigree selection in crosses WH 147 × WH 533 and WH 147 × Raj 3077 could be effective for breeding pure lines of wheat for sustainable agriculture (low input genotypes responsive to biofertilizers such as AMF and Azotobacter ).
Ninety-nine wheat cultivars from six different agro-climatic zones of India were analyzed for the Vrn-1, Vrn-2, Vrn-B3, Vrn-4 and Ppd-D1 composition with DNA sequenced based allele specific or linked markers for the above-mentioned genes. A majority of the germplasm carried the dominant Vrn-A1a allele alone or in combination with Vrn-B1 and Vrn-D1. The three dominant genes were cumulatively present in 30 cultivars among all the zones, whereas double dominant combination, Vrn- A1/Vrn-B1 was identified in 18 cultivars, Vrn-A1/Vrn-D1 in 6 cvs and Vrn-B1/Vrn-D1 in 16 cvs. The combination of the dominant alleles of all three genes was most frequent in cvs of Northern Western Plains Zone. Northern Hill Zone had vrn-B1 and vrn-D1 alleles in higher proportions compared to the dominant alleles Vrn-B1 and Vrn-D1 indicating successful spring/winter wheat cross breeding. All of the cvs had the recessive Vrn-B3 allele. Most of the cvs had photoperiod insensitive allele in all the zones and only 9% cvs possessed the photoperiod sensitive allele (b) of the Ppd-D1 gene. This information will be useful in selecting parental lines for crossing to maximize diversity at these loci and for future molecular marker assisted breeding for cultivar improvement.
Abiotic stresses are major constraints to wheat productivity in many parts of the world. Tolerance to abiotic stresses can be achieved indirectly by selection for morpho-physiological traits. Physiological trait based breeding has been associated with improved performance under stress; and hence can combat and adapt wheat to drought and heat stress. Therefore, in the present study, phenotyping was carried out for agro-physiological traits in 52 diverse wheat germplasm lines under timely sown, rainfed and late sown environments for two years. Mean yield of the genotypes over the six environments were positively correlated with NDVI, days to maturity and negatively correlated with canopy temperature. The phenotypic data validated marker-trait associations of a number of meta-QTLs identified earlier for different physiological and agronomic traits. Six and seven meta-QTL genomic regions were found to be consistent in their expression for two years under rainfed/restricted irrigation and late sown environments, respectively. Expression analysis of the underlying candidate gene AK248593.1 in meta-QTL26 region revealed two folds higher expression in the NILs carrying the co-localized SSR markers. The linked markers of the thirteen meta-QTL regions associated with different traits can be used for effective transfer of the QTLs through marker assisted selection in wheat breeding programmes.
Under limiting water resources, root system response of genotypes to soil-water conditions with enhanced shoot biomass holds the key for development of improved genotypes. Based on the hypothesis of root biomass contribution to higher yields under limiting conditions which might be attributed to the root system plasticity of genotypes, a set of thirty-four genotypes were evaluated under three moisture regimes in a pot experiment for root system traits. Total root dry matter had a positive association with total shoot dry matter (0.35). The identified genotypes showed greater yields and higher stress tolerance index (STI) in an independent field experiment. Root dry matter positively correlated with stress tolerance index on grain yields in both the years. The total variation was partitioned into principal components and GGE biplots were studied to identify the best performing genotypes under the three environments for root dry biomass and related traits. HD2932 appeared to be the winner genotype under different regimes. These results might be helpful in identifying donors for moisture stress tolerance that can be utilized in wheat breeding programmes for accelerated development of varieties with improved root systems.