Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: N. Külcü x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search

The thermal behaviour of the complexes of N,N-diethyl-N′-benzoylthiourea (DEBT) with Ni(II), Cu(II), Pt(II), Pd(II) and Ru(III) was studied using differential thermal analysis (DTA) and thermogravimetry (TG). These complexes undergo only a pyrolytic decomposition process. A gas chromatography-mass spectrometry combined system was used for the verification of the first decomposition product and X-ray diffraction method for the characterization of the final products of pyrolysis.

Restricted access

Abstract  

Thermogravimetry (TG) and differential thermal analysis (DTA) were performed on the complexes with general formula (M(DEBT)n (where M =Fe, Co, Ni, Cu or Ru; n =2, or 3 and DEBT=N,N-diethyl-N'-benzoylthiourea). Derivative thermogravimetric (DTG) curves were also recorded in order to obtain decomposition data on the complexes. The complexes of Fe(III), Co(II), Ni(II), Cu(II) and Ru(III) displayed two- or three-stage decomposition patterns when heated in a dynamic nitrogen atmosphere. Mass loss considerations relating to the decomposition stages indicated the conversion of the complexes to the sulfides or to the corresponding metal alone (Cu, Ru, NiS, CoS or FeS). Mathematical analysis of the TG and DTG data showed that the order of reaction varied between 0.395 and 0.973. Kinetic parameters such as the decomposition energy, the entropy of activation and the pre-exponential factor are reported.

Restricted access

Abstract  

The thermal decompositions of the complexes of N,N-dialkyl-N'-benzoylthioureas with Cu(II), Ni(II), Pd(II), Pt(II), Cd(II), Ru(III) and Fe(III) were studied by TG and DTA techniques. These metal complexes decompose in two stages: elimination of dialkylbenzamide, and total decomposition to metal sulphides or metals. The influence of the alkyl substituents in these benzoylthiourea chelates on the thermal behaviour of the metal complexes was investigated.

Restricted access