Search Results

You are looking at 1 - 8 of 8 items for :

  • Author or Editor: N. Kumar x
  • Biology and Life Sciences x
  • Refine by Access: All Content x
Clear All Modify Search

A field experiment was carried out to investigate the establishment of phosphate-dissolving strains of Azotobacter chroococcum, including soil isolates (wild type) and their mutants, in the rhizosphere and their effect on the growth attributes and root biomass of three genetically divergent wheat cultivars (Triticum aestivum L.). Four fertilizer doses were applied: 90 kg N ha—1, 90 kg N + 60 kg P2O5ha—1, 120 kg N ha—1and 120 kg N + 60 kg P2O5ha—1, besides a control plot without fertilizers or bioinoculants. Phosphate-solubilizing and phytohormone-producing parent soil isolates and mutant strains of A. chroococcum were isolated and selected following the enrichment method. On an overall basis the mutant strains performed better than the soil isolates for in vitro phosphate solubilization (11–14%) and growth hormone production (11.35%). Seed inoculation of wheat varieties with phosphate-solubilizing and phytohormone-producing A. chroococcum showed a better response over the control. Mutant strains of A. chroococcum showed a higher increase in grain (15.30%) and straw (15.10%) yield over the control and better survival (12–14%) in the rhizosphere as compared to their parent soil isolate (P4). Mutant strain M15 performed better in all three varieties in terms of increase in grain yield (20.8%) and root biomass (20.6%) over the control.

Restricted access

Global warming is rising as a serious concern affecting agricultural production worldwide. Rice is a staple food crop and the threshold temperature for its pollination is 35 °C. A rise in temperature above this value can cause pollen sterility and may severely affect fertilization. Therefore, a study emphasizing the rise in temperature with respect to pollen viability was conducted with eleven rice genotypes during kharif seasons of 2010 and 2011 in indigenous field conditions. Increasing mean temperature by 12 °C at full flowering was found to severely affect the spikelet attributes of the crop. All genotypes showed spikelet sterility above 90% during both seasons. The study indicated that increased temperature may limit rice yield by affecting spikelet fertility and grain filling. The net reduction in grain yield was 30.4% and 27.6% in 2010 and 2011, respectively. A clear reduction in pollen size under high temperature was shown by scanning electron microscopy.

Restricted access

An investigation to standardize the protocol for in vitro application of colchicine for enhancing the doubled haploid production in wheat was done. Two tetraploid (PDW-314 and A-9-30-1); and two hexaploid (DH-40 and C-306) wheat genotypes were used as maternal parents, whereas, the pollen sources involved Zea mays (cv. Bajaura Makka) and Imperata cylindrica. During the rabi seasons of years 2013–14 and 2014–15, wheat × maize and wheat × I. cylindrica hybridization was carried out followed by treatment of their haploids produced as a result of elimination of chromosomes of maize and I. cylindrica respectively, with varied doses of colchicine for different durations The various doses of colchicine were categorized into two groups: lower doses for longer durations (0.01, 0.025, 0.05% each for 5, 7, 9, 11 hrs) and higher doses for shorter durations (0.05, 0.075, 0.10, 0.15, 0.20, 0.25% each for 5, 4, 3, 2 hrs). The response of different concentrations of colchicine applied for varied durations revealed significant differences for various doubled haploidy parameters viz., per cent survived plants, per cent doubled haploid formation and per cent doubled haploid seed formation. In hexaploid and tetraploid wheats, colchicine doses of 0.075% for 4 hrs and 0.15% for 4 hrs, respectively were established as optimum for enhanced doubled haploid production.

Restricted access

The interaction between salinity (8 and 12 dS m −1 ) and three levels (40, 80 and 120 kg ha −1 ) of different forms of nitrogen (NO 3 , NH 4 + and NO 3 + NH 4 + ) were studied in Brassica juncea cv. RH-30. The plants were salinized with 8 and 12 dS m −1 at 35 and 55 days after sowing. The relative water content (RWC), water potential (Ψ w ) and osmotic potential (Ψ s ) exhibited a marked decline under salinity stress. The application of the combined form (NO 3 + NH 4 + ) of nitrogen (120 kg ha −1 ) considerably improved the water status and mitigated the adverse effect of salinity on growth. The salinity-induced osmotic effect led to stomatal closure and caused a substantial reduction in net photosynthetic rate (P N ), stomatal conductance (g s ) and transpiration rate (E) at the pre-flowering and flowering stages (45 and 65 DAS). Salinity effects were considerably moderated by additional nitrogen supply, which varied with the source of nitrogen, the level of salinity/fertilizer and the stage of plant growth. The inhibition in photosynthesis was relatively greater in ammonium-fed (NH 4 + ) than in nitrate-fed (NO 3 ) plants, while the transpiration rate was relatively lower in nitrate-fed plants grown either with or without saline water irrigation. The nitrate form of nitrogen @ 120 kg ha −1 proved best in alleviating the adverse effect of salinity on photosynthesis and transpiration at both the growth stages.

Restricted access

Adenosine diphosphate glucose pyrophosphorylase (AGPase) is the rate limiting enzyme of starch biosynthesis that directly affects the wheat productivity. AGPase and grain growth rate (GGR) discerned to be following strict temperature regimen in wheat disomic chromosome substitution (DCS) lines. The first half of grain filling period had chromosome 1B and 2D as prominent players, whereas second half was mainly controlled by chromosomes 6A and 5B. Chromosome 2D had major contribution towards yield in a specific temperature range of 23 ± 1.5 °C during initial stages of grain filling which can serve as an effective early screening tool for terminal heat tolerance in wheat. Chromosome 2D with highest amylose content can also be utilized to produce low digestibility flour. Grain yield was found to be significantly associated with spikes/plant, grains/spike, grain weight/spike and plant biomass. Further, path analysis indicated that though grains/spike had less direct effect on grain yield but its indirect impact on grain yield via AGPase-21 activity was high.

Restricted access
Cereal Research Communications
Authors: S. Gupta, R. Yadav, K.B. Gaikwad, A. Arora, A. Kumar, A. Kushwah, and N.K. Bainsla

Physiological breeding complementing the conventional approach is increasingly being explored in wheat in view of stagnating annual genetic yield gain. Designing improved plant types required knowledge about physiological traits associated with yield gain in the past. Fourteen wheat varieties including 12 historically important and popular (mega) wheat cultivars and two recently registered varieties were observed for various physiological traits for two years. Both breeding period and genotypes within breeding period accounted for significant differences for most of the physiological traits. Regression analysis indicated curvilinear trend for leaf area index (LAI), flag leaf area, and root length and root weight. Near perfect leaf area index (LAI 5.94) with semi-erect leaves and higher flag leaf area was observed in all time mega variety HD 2967 indicated the importance of plant architecture and crop canopy in yield maximization. Linear declining trend was observed for coleoptile length, number of stomata per cm2 and flag leaf length. Increasing trend for total chlorophyll content and normalized difference for vegetative indices (NDVI) at both vegetative and flowering stage indicated the importance of leaf greenness in yield improvement. Root length has continuously declined except for the latest released varieties, however no such trend was observed for root weight. We propose that grain yield stabilization at still higher level can be achieved by increasing photosynthetic capacity, optimizing the crop canopy slightly less than the optimum, and better partitioning to grain yield through directed physiological based breeding.

Restricted access

One thousand four hundred and eighty three spring wheat germplasm (Triticum aestivum L.) lines comprising Indian as well as exotic lines were screened for resistance to spot blotch disease during winter 2014-15 at hot spot locations i.e., Banaras Hindu University, Varanasi and Uttar Banga Krishi Vishwavidyalaya, Cooch Behar. Severity of the disease at different stages beginning from tillering to dough stage was recorded. Location Severity Index (LSI) of Varanasi was higher than Cooch Behar. Twenty eight accessions were resistant or highly resistant at both locations. These 28 accessions were validated during the winter season (2015–2016). These germplasm were also evaluated at four environments for agronomic traits. Out of 28 accessions, seven (IC564121, IC529684, IC443669, IC443652, IC529962, IC548325 and EC178071-331) were highly resistant across the locations and over the years of study. These accessions comprised one exotic and six indigenous accessions belonging to Uttarakhand and Haryana. Two lines (IC529962 and IC443652) had higher yield than the best check at all the locations. These lines showing highly resistant reaction alongwith wider adaptability can be expedited for direct cultivation or for the development of high yielding and disease resistant cultivars. These lines can also be used for identification of novel resistance gene using allele mining tools and their deployment for the development of spot blotch resistant cultivars.

Restricted access

Nitrogen use efficiency, more specifically physiological nitrogen use efficiency depends primarily on management of N, one of the major essential nutrients. It is required in increased agricultural production and may possibly cause soil toxicity if fed in excess. Rate of N fertilizer application in fertile agricultural field and improved productivity in sterile soils require the improvement of NUE. A field experiment was therefore conducted to evaluate the effect of different N levels (N0, N50, N100 and N200) on rice genotypes. Vegetative plant growth was found to be reduced under N0 while improved at N200 level. Among the genotypes, highest PNUE (34.94) and correspondingly higher yield (7.15 ton ha−1) was observed for Krishna Hamsa. The other traits viz. plant height, no. of productive tillers and LAI exhibited higher values for Krishna Hamsa as well. Hence these can be utilized as physiological markers for the selection of rice genotypes efficient in N use.

Restricted access