Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Norbert Kusolitsch x
- Refine by Access: All Content x
Abstract
In 1947 Henry Scheffé published a result which afterwards became known as Scheffé’s theorem, stating that the distributions of a sequence (f n ) of densities, which converge almost everywhere to a density f, converge uniformly to the distribution of f. But almost 20 years earlier Frigyes Riesz proved a sufficient condition for convergence in the p-th mean (p ≥ 1), wherefrom the Scheffé theorem is just a special case.
In this note the proof of a slight generalization of the Maximal Ergodic Inequality is a bit simplified and it is shown that from this generalized inequality Birkhoff’s Pointwise Ergodic Theorem follows almost immediately.