Search Results

You are looking at 1 - 10 of 12 items for :

  • Author or Editor: O. Farmer x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The detection of129I by Inductively Coupled Plasma Mass Spectrometry (ICP/MS) in environmental samples can be used to determine anthropogenic release of this long-lived radionuclide, which is a definitive indicator of certain nuclear activities. By using selective precipitation techniques with on-line ICP/MS detection, low levels of129I can be detected. The major interference for the ICP/MS detection of129I is due the presence of natural129Xe found in water samples at a concentration of about 1 ng/ml. This work will demonstrate a instrument detection of less than 50 fg129I from environmental air samples and shows promise for a rugged ICP/MS technique to monitor129I levels in ambient air for nonproliferation monitoring purposes.

Restricted access

Abstract  

The measurement of fission product cesium isotopes 135Cs and 137Cs at low femtogram (fg) 10−15 levels in ground water by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) is reported. To eliminate the natural barium isobaric interference on the cesium isotopes, in-line chromatographic separation of the cesium from barium was performed followed by high sensitivity ICP-MS analysis. A high efficiency desolvating nebulizer system was employed to maximize ICP-MS sensitivity ~10 cps/fg. The three sigma detection limit for 135Cs was 2 fg/mL (0.1 μBq/mL) and for 137Cs 0.9 fg/mL (0.0027 Bq/mL) measured from the standard with analysis time of less than 30 min/sample. Cesium detection and 135/137 isotope ratio measurement at very low femtogram levels using this method in a spiked ground water matrix is also demonstrated.

Restricted access

Abstract  

Separation and analysis of235U fission produced rare earth elements (REE) is described. Rare earth elements were separated using a high presure ion chromatographic separation where by each rare earth is isolated and individually detected. Detection is performed by inductively coupled plasma mass spectrometry (ICP/MS) and solid scintillation beta counting. The resulting detection methods allow complete evaluation of all stable (non-radioactive) and many radioactive REE fission products. The two detection methods (ICP/MS and Beta) illustrate how mass selective and radiometric data can be used to provide complimentary information regarding the isotopic characterization of radioactive samples.

Restricted access

Abstract  

A method for the separation and determination of total and isotopic uranium and plutonium by ICP/MS was developed for IAEA samples on cellulose-based media. Preparation of the IAEA samples involved a series of redox chemistries and separations using TRU® resin (Eichrom). The sample introduction system, an APEX nebulizer (Elemental Scientific, Inc.), provided enhanced nebulization for a several-fold increase in sensitivity and reduction in background. Application of mass bias (ALPHA) correction factors greatly improved the precision of the data. By combining the enhancements of chemical separation, instrumentation and data processing, detection levels for uranium and plutonium approached high attogram levels.

Restricted access

Abstract  

Experimental results are provided for the sample analyses for technetium in charcoal samples placed in-line with a Savannah River Site (SRS) processing stack effluent stream as a part of an environmental surveillance program. The method for Tc removal from charcoal was based on that originally developed with high purity charcoal. Presented is the process that allowed for the quantitative analysis of 99Tc in SRS charcoal stack samples with and without 97Tc as a tracer. The results obtained with the method using the 97Tc tracer quantitatively confirm the results obtained with no tracer added. All samples contain 99Tc at the pg·g−1 level.

Restricted access

Abstract  

Electrochemically modulated separations (EMS) are shown to be a rapid and selective means of extracting and concentrating Pu from complex solutions prior to isotopic analysis by inductively coupled plasma mass spectrometry (ICP‐MS). This separation is performed in a flow injection mode, on‐line with the ICP‐MS. A three‐electrode, flow‐by electrochemical cell is used to accumulate Pu at an anodized glassy carbon electrode by redox conversion of Pu(III) to Pu (IV&VI). The entire process takes place in 2% (v/v) (0.46 M) HNO3. No redox chemicals or acid concentration changes are required. Plutonium accumulation and release is redox dependent and controlled by the applied cell potential. Large transient volumetric concentration enhancements can be achieved. Based on more negative U(IV) potentials relative to Pu(IV), separation of Pu from uranium is efficient, thereby eliminating uranium hydride interferences. EMS‐ICP‐MS isotope ratio measurement performance will be presented for femtogram to attogram level plutonium isotope injections.

Restricted access

Abstract  

Lanthanides are common fission products and the ability to separate and quantify these elements is critical to rapid radiochemistry applications. Published lanthanide separations using Eichrom Ln Spec resin utilize an HCl gradient. Here it is shown that the efficacy and resolution of the separation is improved when a nitric acid gradient is used instead. The described method allows parallel processing of many samples in 1.5 h followed by 60 min counting for quantification of 9 radioisotopes of 7 lanthanide elements.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: M. Douglas, J. Friese, G. Warren, P. Bachelor, O. Farmer, A. Choiniere, S. Schulte, and C. Aalseth

Abstract  

A project has been undertaken at Pacific Northwest National Laboratory (PNNL) to tailor a series of efficient chemical separations to allow the rapid quantification of gamma-ray emitting isotopes in mixed fission product (MFP) samples. In support of that goal, modeling of singles and coincident gamma-ray spectra that would result from various chemical separation strategies has been performed. These simulated spectra have identified likely instances of spectral interference and have provided an estimate of the time window available for the detection of radionuclides following various chemical separation schemes. A description of results to date is presented here, demonstrating the utility of this approach for improved processing and analysis of fission product samples.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: E. Hoppe, A. Seifert, C. Aalseth, A. Day, O. Farmer, T. Hossbach, J. McIntyre, H. Miley, J. Smart, and G. Warren

Abstract  

Spectrometers for the lowest-level radiometric measurements require materials of extreme radiopurity. Measurements of rare nuclear decays, e.g., neutrinoless double-beta decay, can require construction and shielding materials with bulk radiopurity reaching one micro-Becquerel per kilogram or less. When such extreme material purity is achieved, surface contamination, particularly solid daughters in the natural radon decay chains, can become the limiting background. High-purity copper is an important material for ultra-low-background spectrometers and thus is the focus of this work. A method for removing surface contamination at very low levels without attacking the bulk material is described. An assay method using a low-background proportional counter made of the material under examination is employed, and the preliminary result of achievable surface contamination levels is presented.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: E. Hoppe, E. Mintzer, C. Aalseth, D. Edwards, O. Farmer, J. Fast, D. Gerlach, M. Liezers, and H. Miley

Abstract  

Copper is one of few elements that have no long-lived radioisotopes and which can be electrodeposited to ultra-high levels of purity. Experiments probing neutrino properties and searching for direct evidence of dark matter require ultra-clean copper, containing the smallest possible quantities of radioactive contaminants. Important to the production of such copper is establishing the location and dispersion of contamination within the bulk material. Co-deposition of contaminants during copper electrodeposition and its relationship to nucleation and growth processes were investigated using scanning electron microscopy (SEM), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and secondary ionization mass spectrometry (SIMS).

Restricted access