Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: P. Wang x
  • Materials and Applied Sciences x
  • Biology and Life Sciences x
  • Refine by Access: All Content x
Clear All Modify Search

The effect of short-term higher ambient temperature (HT) and continuous vibration (CV) treatment was comparatively characterized by sensory evaluation and chemical analysis. Results of quantitative descriptive analysis of modified frequency (MF) showed that HT causes both in red wine and white wine a decrease of fruity and floral characters, an unbalance of taste, and a shortness of aftertaste length. CV wine showed very close sensory characters to control in most terms evaluated. Seventy-four volatile compounds were quantitative analysed by solid phase microextractiongas chromatography-mass spectrometry, and the principal component analysis (PCA) was conducted on the 23 volatiles of highest odour activity value (OAV). The concentrations of potential fruity and floral aroma attributors like isoamyl acetate, ethyl butanoate, ethyl 2-methylbutanoate, ethyl hexanoate, ethyl octanoate, β-damascenone, and linalool were lower in HT wine than that in original wine and CV wine.

Restricted access

Abstract

This study optimised the hydrolysis process of chicken plasma protein and explored the in vivo antioxidant activity of its hydrolysates. The results showed that alkaline protease provided the highest degree of hydrolysis (19.30%), the best antioxidant effect in vitro. The optimal hydrolysis process of alkaline protease was: temperature 50 °C, time 8 h, [E]/[S] 7000 U g−1, pH 7.5. Antioxidant studies in vivo showed that the low, medium, and high dose groups significantly reduced the serum MDA and protein carbonyl content (P < 0.05) and significantly increased the serum SOD and GSH contents (P < 0.05). The results of HE staining of the liver showed that the liver cells in the model group were severely damaged, but the chicken plasma protein hydrolysates could alleviate this pathological damage. Chicken plasma protein hydrolysis products had certain antioxidant activity.

Restricted access

Abstract

Intermittent fasting (IF) is a dietary strategy that involves alternating periods of abstention from calorie consumption with periods of ad libitum food intake and has been shown to have beneficial effects in many ways. Recent studies have shown that IF attenuates neurodegeneration and improves cognitive decline, enhances functional recovery after stroke as well as attenuates the pathological and clinical features of epilepsy in animal models. Furthermore, IF induced several molecular and cellular adaptations in neurons that overall enhanced cellular stress resistance, synaptic plasticity, and neurogenesis. In this review, the beneficial effects of IF on central neurological disorders are discussed. The information summarised in this review can be used to help contextualise existing research and better guide the development of future IF interventions.

Open access

Influence of different maturity stages and treatments of ethephon, exogenous ABA, and fluridone on the ripening and hormone level of ‘Zhonghuashoutao’ peach during development and post-harvest storage were investigated. The accumulation of endogenous ABA appeared at the onset of ripening and peaked at two weeks before harvest. Fruit firmness decreased, while ethylene release and SSC/TA increased sharply after a maximum peak of ABA, which have triggered the initiation of the fruit ripening. The fruits, harvested at 170 d when fruits have ripened and stored at 20 °C, showed an ethylene climacteric peak, and the pulp started softening normally, and the SSC/TA value increased. Compared with them, the immature green fruits harvested at other dates, could not mature normally due to the lack of normal reciprocity between ABA and ethylene. The ethylene release was promoted by the treatment of exogenous ABA and ethephon during ripening until the endogenous ABA reached a maximum value. However, fluridone treatment showed an inhibitory effect. The above-mentioned changes occurred again in the peach fruits after harvest. The results indicated that both ABA and ethylene play important roles in peach ripening, and their action depended on the ripening stage of peach.

Restricted access

The present study was to evaluate the survival rate of free and encapsulated Bifidobacterium bifidum BB28 under simulated gastrointestinal conditions and its stability during storage. Results showed that non-microencapsulated Bifidobacterium bifidum BB28 was more susceptible to simulated gastrointestinal conditions than microencapsulated bacteria. Microencapsulated Bifidobacterium BB28 exhibited a lower population reduction than free cells during exposure to simulated gastrointestinal conditions, the viable count of monolayer microcapsules, double layer microcapsules, and triple layer microcapsules decreased by nine magnitudes, four magnitudes, and one magnitude after 2 h, respectively. The enteric test showed that the microorganism cells were released from the monolayer, double layer, and triple layer microcapsules completely in 40 min. Moreover, the optimum storage times of free Bifidobacterium BB28, monolayer microcapsules, double layer microcapsules, and triple layer microcapsules were 21 days, 21 days, 28 days, and more than 35 days in orange juice, pure milk, and nutrition Express (a commercially available milk based drink), and the viable counts were maintained at 1×106 CFU g−1 or more, which means that the double layer and triple layer of microcapsules of B. bifidum BB28 have great potential in food application.

Restricted access
Acta Alimentaria
Authors:
Y.L. Xu
,
Y.D. Zhang
,
Z.P. Wang
,
W.W. Chen
,
C. Fan
,
J.Q. Xu
,
T. Wang
, and
S. Rong

Abstract

To explore the effect of sesamol on the cognition of APP/PS1 mice, 8-week-old APP/PS1 and wild-type male mice were divided into AD model group, AD + sesamol (50 mg kg−1 bw) group, and Control group. Sesamol was orally administered once a day for 5 months. Morris water maze was used to evaluate the learning and memory ability of mice. The number of synapses in the hippocampal neurons was detected by Golgi staining. Nissl staining was used to observe the changes of Nissl bodies in CA1 and CA3 regions of the hippocampus. Western blotting was used to detect the expression of Aβ, SIRT1, BDNF, and p-CREB/CREB in the hippocampus and cortex. Compared with the model group, sesamol decreased the latency period of APP/PS1 mice (P < 0.05) and increased the total number of neuronal dendritic spines in the hippocampal CA3 region, as well as increased the number of Nissl bodies (P < 0.05). Western blotting results showed that sesamol significantly reduced Aβ protein expression in the hippocampus and cortex, increased SIRT1 expression in the cortex, and increased BDNF expression in the hippocampus (P < 0.05). Sesamol improved the learning and memory abilities of APP/PS1 mice probably through increasing the density of neuronal dendritic spines and upregulating the levels of SIRT1 and BDNF.

Restricted access