Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: R. Gatti x
- Chemistry and Chemical Engineering x
- Refine by Access: All Content x
Abstract
We have developed an analytical method for detection of239Pu in aqueous samples at concentrations as low as 10–10M. This nuclear counting technique utilizes the uranium L X-rays, which follow the alpha-decay of plutonium. Because L X-rays are specific for the element and not for the individual isotope, the isotopic composition of the plutonium sample must be known. The counting efficiency in the 11–23 keV range is determined from a plutonium standard, and the concentration of the sample is then calculated from the L X-ray count and the isotopic composition. The total L X-ray count is corrected for possible contributions from other radionuclides present as impurities by measuring the low-energy gamma-spectrum for each contaminant to establish specific photon/X-ray ratios. The ratios are important when241Pu and242Pu are measured, because the respective decay chain members produce non-U L X-rays. This new method can replace the use of labor-intensive radiochemical separation techniques and elaborate activation methods for analysis of239Pu in aqueous samples. It is also applicable for assaying plutonium in liquid wastes that pose possible hazards to the environment.
Abstract
A scheme was developed for the determination of oxidation states of plutonium in environmental samples. The method involves a combination of solvent extractions and coprecipitation. It was tested on solutions with both high-level and trace-level concentrations. The scheme was used to determine Pu oxidation states in solutions from solubility experiments in groundwater from a potential nuclear waste disposal site. At steady-state conditions, Pu was found to be soluble predominantly as Pu(V) and Pu(VI).