Search Results
You are looking at 1 - 1 of 1 items for
- Author or Editor: R. Radha x
- Refine by Access: All Content x
Abstract
In this paper, it is shown that the class of right Fourier multipliers for the Sobolev space W
k,p(H
n) coincides with the class of right Fourier multipliers for L
p(H
n) for k ∈ ℕ, 1 < p < ∞. Towards this end, it is shown that the operators R
j
\documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$\bar R$$
\end{document}
jℒ−1 and \documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$\bar R$$
\end{document}
j
R
jℒ−1 are bounded on L
p(H
n), 1 < p < ∞, where \documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$R_j = \frac{\partial }
{{\partial z_j }} - \frac{i}
{4}\bar z_j \frac{\partial }
{{\partial t}}, \bar R_j = \frac{\partial }
{{\partial \bar z_j }} + \frac{i}
{4}z_j \frac{\partial }
{{\partial t}}$$
\end{document}
and ℒ is the sublaplacian on H
n. This proof is based on the Calderon-Zygmund theory on the Heisenberg group. It is also shown that when p = 1, the class of right multipliers for the Sobolev space W
k,1(H
n) coincides with the dual space of the projective tensor product of two function spaces.