Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: S. Mandal x
- Biology and Life Sciences x
- Refine by Access: All Content x
Field studies were undertaken for two consecutive seasons to evaluate the bioefficacy of cyazypyr 10% OD, a new molecule belonging to anthranilic diamide group of insecticides, along with imidacloprid 17.8% SL and fipronil 5% SC as standard checks, against the insect pest complex of tomato vis-à-vis its impact on natural enemies and crop health. The toxicity of cyazypyr 10% OD and four other molecules, each at two doses (diluted in 600l water), against the pupal stage of Trichogramma pretiosum Riley, an important egg parasitoid of Helicoverpa armigera Hubn., was evaluated in the laboratory. Cyazypyr 10% OD @ 90 and 105 g a.i./ha was highly effective in controlling the fruit borer, Helicoverpa armigera Hubn., aphid, Aphis gossypii Glov. and white fly, Bemisia tabaci Gen., and increasing the yield of marketable fruits. This insecticide @ 60-105 g a.i./ha effectively controlled the leaf miner, Liriomyza trifolii Burg. Imidacloprid 17.8% SL @ 22.5 g a.i./ha and fipronil 5% SC @ 60 g a.i./ha were also highly effective in controlling the pests. Considering the bioefficacy and yield, cyazypyr 10% OD @ 90 g a.i./ha may be recommended for effective control of pest complex of tomato. Cyazypyr 10% OD @ 45–105 g a.i./ha did not significantly reduce the field population of natural enemies and was safe to the crop even @ 360 g a.i./ha. In laboratory test, cyazypyr @ 90 and 60 g a.i./ha found to be safe to T. pretiosum Riley pupae, causing only 23.17 and 20.73% mortality, respectively.
Three-year (2007/2008–2009/2010) field experiment was conducted at the Directorate of Water Management Research Farm under Deras command in Odisha, India to assess the crop yield, irrigation water use efficiency (WUE), sustainable yield index (SYI), land utilization index (LUI) and changes in soil organic carbon (SOC) for dominant rice systems, viz. rice-maize-rice, rice-cowpea-rice, rice-sunflower-rice, rice-tomato-okra and rice-fallow-rice. Results revealed that crop yield, in terms of total system productivity (TSP) increased by 273, 113, 106 and 58% in rice-tomato-okra, rice-sunflower-rice, rice-maize-rice and rice-cowpea-rice, respectively, when compared to rice-fallow-rice. Irrigation WUE was 49–414% greater in rice-based diversified systems than the existing rice-fallow-rice (2.98 kg ha−1 mm−1). The SYI ranged from 0.65 to 0.75 indicating greater sustainability of the systems. Three crops in a sequence resulted in greater LUI and production efficiency compared to rice-fallow-rice. The gross economic return and benefit-cost ratio was in the order: rice-tomato-okra > rice-maize-rice > rice-sunflower-rice > rice-cowpea-rice > rice-fallow-rice. The SOC storage ranged from 40.55 Mg ha−1 in rice-fallow-rice to 46.23 Mg ha−1 in rice-maize-rice system. The other systems had also very close values of SOC storage with the rice-maize-rice system; there was a positive change of SOC (7.20 to 12.52 Mg ha−1) for every system, with highest in rice-maize-rice system and the lowest in rice-fallow-rice. It is concluded that the appropriate rice-based system would be rice-tomato-okra followed by rice-maize-rice, rice-sunflower-rice and rice-cowpea-rice. Rice-fallow-rice is not advisable because of its lower productivity, lower LUI and economic return.
Genotype × environment (G × E) interaction effects are of special interest for identifying the most suitable genotypes with respect to target environments, representative locations and other specific stresses. Twenty-two advanced breeding lines contributed by the national partners of the Salinity Tolerance Breeding Network (STBN) along with four checks were evaluated across 12 different salt affected sites comprising five coastal saline and seven alkaline environments in India. The study was conducted to assess the G × E interaction and stability of advanced breeding lines for yield and yield components using additive main effects and multiplicative interaction (AMMI) model. In the AMMI1 biplot, there were two mega-environments (ME) includes ME-A as CARI, KARAIKAL, TRICHY and NDUAT with winning genotype CSR 2K 262; and ME-B as KARSO, LUCKN, KARSA, GOA, CRRI, DRR, BIHAR and PANVE with winning genotypes CSR 36. Genotypes CSR 2K 262, CSR 27, NDRK 11-4, NDRK 11-3, NDRK 11-2, CSR 2K 255 and PNL 1-1-1-6-7-1 were identified as specifically adapted to favorable locations. The stability and adaptability of AMMI indicated that the best yielding genotypes were CSR 2K 262 for both coastal saline and alkaline environments and CSR 36 for alkaline environment. CARI and PANVEL were found as the most discernible environments for genotypic performance because of the greatest GE interaction. The genotype CSR 36 is specifically adapted to coastal saline environments GOA, KARSO, DRR, CRRI and BIHAR and while genotype CSR 2K 262 adapted to alkaline environments LUCKN, NDUAT, TRICH and KARAI. Use of most adapted lines could be used directly as varieties. Using them as donors for wide or specific adaptability with selection in the target environment offers the best opportunity for widening the genetic base of coastal salinity and alkalinity stress tolerance and development of adapted genotypes. Highly stable genotypes can improve the rice productivity in salt-affected areas and ensure livelihood of the resource poor farming communities.