Search Results
You are looking at 1 - 10 of 12 items for :
- Author or Editor: S. Sun x
- Biology and Life Sciences x
- Refine by Access: All Content x
Eight cultivars of dry-land wheat (Triticum aestivum L.) historically planted in Shaanxi Province, China, were grown in plots with irrigation and drought treatments during the growing seasons of 2011–2014, so as to characterize the differences in the rate and duration of the grain-filling stage among cultivars. The experimental results showed no obvious change among cultivars with respect to the duration of the grain-filling stage and no significant correlation between duration and grain weight. The filling rates of all three phases (lag, linear, and mature periods) showed significant differences among cultivars and had a greater effect on the grain weight than the duration of the filling stage, even though drought decreased the filling rate in the linear and mature periods. A lower filling rate led to a lighter grain weight in inferior grains than in superior grains. For the superior and inferior grains in the central spikelets, modern cultivars possess faster filling rates, especially in the lag and linear periods, whereas for the whole spike, no significant trend with cultivar replacement was observed. Faster filling rates with stable filling durations will be beneficial in obtaining additional yield increases.
Field cultivation practices affected soil temperature that influenced the crop development of winter crops. This study was undertaken to determine the effects of different mulch materials, tillage depths and planting methods on spike differentiation of winter wheat ( Triticum aestivum L.). The field experiment was consisted of three tests: (i) polythene mulch, straw mulch and no mulch; (ii) ridge planting and furrow planting; (iii) conventional tillage and shallow tillage. The results showed that soil temperature was affected by different practices. The higher soil temperature under polythene mulch resulted in the earlier initiation of spike differentiation, while straw mulch decreased soil temperature in spring that delayed the initiation compared with the non-mulch treatment. The spike initiation under ridge planting started earlier than that of furrow planting. Reduced tillage delayed the initiation compared with the conventional tillage. Duration of spike differentiation lasted longer under earlier starting of initiation that increased the grain numbers per spike. Other yield component characters were not affected by soil temperature. It was concluded that in the North China Plain where grain-filling duration of winter wheat was limited, agricultural practices that increased soil temperature in spring were favorable for grain production.
The hypothesis of niche differentiation with respect to resources is considered to be one of the most influential explanations for the maintenance of species diversity. The hypothesis has been examined extensively by testing its prediction of species-habitat association, which posits that the spatial distribution of species is highly correlated with environmental variables. However, we argue that widespread evidence of the species-habitat association lacks adequate rigor to justify the niche differentiation hypothesis. In this study, we tested whether and to what extent the observed species-habitat association could be caused by ecological processes other than niche differentiation, in a 20-ha subtropical forest plot. The niche differentiation hypothesis was evaluated by testing the species-habitat association and performing a cross-evaluation of the habitat-diversity expectation, which posits that a strong positive correlation exists between species diversity and habitat complexity. Failure to support the habitat-diversity expectation would at a minimum indicate that the niche differentiation hypothesis might not be the main underlying process of species distribution, despite prevalence of the species-habitat association in the same plot. Our analysis revealed that distributions of most species (86.11%) in the plot were significantly associated with at least one of eight topographical and soil nutrient variables. However, there was almost no significant positive correlation between species diversity and habitat complexity at various spatial scales in the same plot. The results indicate that additional caution is warranted when interpreting the species-habitat association from the niche differentiation perspective. A significant species-habitat association indicates only a species’ habitat preference. The association may reveal nothing about interspecific differences in habitat preference, which is a requirement of the niche differentiation hypothesis.
Genetic structure of 142 parent lines of sorghum [Sorghum bicolor (L.) Moench] was analyzed using model-based approach based on SSR markers. Forty-one selected from 103 SSR markers were used to analyze the parent lines, which generated 189 alleles revealed by each marker ranging from 2 to 11 with an average of 4.6 per marker. The polymorphic information content (PIC) value was 0.543 with a range of 0.089 to 0.850. All the parent lines were assigned to 7 subgroups, named Kafir, Kaoliang, Feterita, Shallu, Hegari, Milo and Durra. Parent lines without clear pedigree record were clustered into their corresponding groups, and genetic components of each line were estimated by Q-values. Information of this study would be useful for breeders to conclude their genetic background and select appropriate parents for germplasm improvement and hybrid breeding, and thus improve the efficiency of breeding programs.
Tobacco rattle virus (TRV-K) was first identified in a symptomatic Gladiolus plant cultivated in Korea. We analyzed the TRV-K genome and compared its phylogeny with other TRV isolates. After constructing of a full-length genomic RNA2 strand clone, a complete sequence was generated from several overlapping clones. The cloned genome was 3261 bases in length, identical to TRV-K, and had three open reading frames. TRV-K had the highest sequence identity with the American isolate TRV-ORY. Sequence analysis of the RNA2 genome showed that TRV-K contains an intact 2a, 2b, and 2c coding sequence and an RNA1-related 3′ terminus, which is typical of TRV RNA2. Phylogenetic analysis revealed that TRV-K is in the same cluster as the American isolates and another Korean isolate, TRV-SK; however, it was in a different cluster than the European isolates.
Two hundred and ninety F9 recombinant inbred lines (RILs) derived from the bread wheat cultivar Gaocheng 8901 and the waxy wheat cultivar Nuomai 1 were used in determining the high-molecular-weight glutenin subunit (HMW-GS) and waxy protein subunit combinations and their effects on the dough quality and texture profile analysis (TPA) of cooked Chinese noodles. Seven alleles were detected at Glu-1 loci. There were two alleles found at each of the Wx-A1, Wx-B1 and Wx-D1 loci. Eight allelic combinations were observed for HMW-GS, LMW-GS and waxy proteins, respectively. Both the 1/7+8/5+10 and 1/7+8/5+12 combinations contributed to dough elasticity, and the 1/7+8/5+10 combination also provided better TPA characteristics. Compared to Wx protein, HMW-GS was more important on dough alveogram properties. LMW-GS significantly affected springiness and cohesiveness; HMW-GS mainly affected the hardness; Wx×LMW-GS significantly affected the springiness, cohesiveness and chewiness; HMW-GS×Wx×LMW-GS mainly influenced the springiness and chewiness. But HMW-GS×LMW-GS only affected the spinginess. These indicated the TPA of noodles was significantly affected by the interactions between glutenin and Wx proteins.
A total of 232 accessions of tetraploid species, durum wheat (Triticum turgidum L. ssp. durum Desf., 2n=4x=28, AABB) with a widespread origin of various countries were used in this study. Their high molecular weight glutenin subunit (HMW-GS) composition was identified by Matrix-assisted laser desorption/ionization time-of-flight Mass Spectrometry (MALDI-TOF-MS). Among all accessions analyzed, 194 were homogeneous for HMW-GS, 38 were heterogeneous, and 62 possessed unusual or new subunits. The results revealed a total of 43 alleles, including 5 at Glu-A1 and 38 at Glu-B1, resulting in 60 different allele combinations. The Glu-B1 locus displayed higher variation compared with Glu-A1. Glu-A1c (55.2%) and Glu-B1aj (17.7%) were the most frequent alleles at Glu-A1 and Glu-B1, respectively. Two allele types (“null” and 1) at the Glu-A1 locus and three allele types (7OE + 8, 14+15, 8) at the Glu-B1 locus appeared to be the common types in the 232 accessions. A total of 23 new alleles represented by unusual subunits were detected at the Glu-A1 and the Glu-B1 locus.
The powdery mildew resistance gene Pm2 is effective in China. Bulked segregant analysis (BSA) was used to search for microsatellite markers linked to Pm2 . Twenty-one microsatellite primer pairs located on chromosome 5DS were screened; three polymorphic loci Xcfd81 -5DS, Xgwm190 -5DS, and Xcfd18 -5DS were linked to Pm2 using an F 2 population from Chinese Spring × C114118 (with Pm2 ) consisting of 814 individuals. The genetic distances between Pm2 and the three markers were: 2.0cM, 34.2cM and 44.2cM, respectively. Microsatellite marker Xcfd81 -5DS could be used in marker assisted selection for Pm2 provided any chosen Pm2 source also carries the relevant marker.
Senescence in a wheat (Triticum aestivum L.) leaf is a programmed degeneration process leading to death. During this process, green leaf area duration (GLAD) and green leaf number of main stem (GLNMS) are gradually reduced. In this study, the two traits of Hanxuan10/Lumai14 DH population at different development stages after anthesis were evaluated under rainfed and irrigated conditions, and QTLs were detected. GLAD and GLNMS of two parents and DH population under rainfed condition were less than those under irrigated condition, and close correlations (P < 0 05) were found between GLAD and GLNMS after 25 DAA under both water conditions. GLAD and GLNMS were co-controlled by major and minor genes. QTLs for GLAD were stably expressed at different development stages after anthesis under both water conditions, such as QGlad22-1B-1, QGlad25-1B-1, QGlad28-1B-2 detected under irrigated condition and QGlad25-1B-3, QGlad28-1B-4 mapped under rainfed condition were located at a 20.7 cM marker interval of Xgwm273-EST122 on 1B chromosome. But QTLs for GLNMS were inducibly and specifically expressed at specific developmental stages after anthesis under both water conditions. The findings provide dynamic genetic information related to wheat senescence.
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Eriks., is a major disease that causes substantial losses to wheat production worldwide. The utilization of effective resistance genes in wheat cultivars is the preferred control of the disease. To study the inheritance of all-stage resistance in spring wheat cultivars Louise, WA008016, Express, Solano, Alturas and Zak from the Pacific Northwest (PNW) of the United States, the six cultivars were crossed with the Chinese susceptible variety Taichung 29. Single-spore isolates of CYR32 and CYR33, the predominant Chinese races of P. striiformis f. sp. tritici, were used to evaluate F1, F2 and BC1 generations for stripe rust resistance under controlled greenhouse conditions. Genetic analysis determined that Louise had one dominant resistance gene to CYR32, temporarily designated as YrLou. WA008016 had two dominant and one recessive resistance genes to CYR32, temporarily designated as YrWA1, YrWA2 and YrWA3, respectively. Express had a single recessive gene that conferred resistance to CYR32, temporarily designated as YrExp3. The two independent dominant genes in Solano conferring resistance to CYR32 were temporarily designated as YrSol1 and YrSol2. Alturas had two recessive genes for resistance to CYR32, temporarily designated as YrAlt1 and YrAlt2. Zak has one dominant gene for resistance to CYR33, temporarily designated as YrZak1. These six cultivars can be important resistance sources in Chinese wheat stripe rust resistance breeding.