Search Results
You are looking at 1 - 3 of 3 items for
- Author or Editor: Sumit Kumar x
- Refine by Access: All Content x
Abstract
L III edge X-ray Absorption Fine Structure (XAFS) spectroscopic study of Eu(III) sorbed on γ-alumina from aqueous solutions of different pH (values ranging from 6 to 8) has been carried out at XAFS beam line of Elettra Synchrotron facility, Italy, in transmission mode. Extended X-ray Absorption Fine Structure spectra of reference compounds, namely, Eu2O3, Eu(OH)3 and Eu-aquo complex in solution, were also measured. The data were analyzed using the IFEFFIT suite of code. XAFS spectra of the sorption samples is dominated by the Eu–O near neighbor co-ordination at distance 2.4 ± 0.1 Å. 8–9 oxygen atoms, coming from both coordinating water molecule and oxygen atoms from alumina surface, surround the Eu(III) in the surface complex. Next near neighbor atoms in all the sorption samples consist of Al at distance ~3.6 and 3.8 Å, which on comparison with literature data indicates towards Eu(III) bidentate binding to apical oxygen of two different alumina octahedra on γ-alumina surface.
Abstract
Release of long-lived radioactivity to the aquatic bodies from various nuclear fuel cycle related operations is of great environmental concern in view of their possible migration into biosphere. This migration is significantly influenced by various factors such as pH, complexing ions present in aquatic environment and sorption of species involving radionuclides on the sediments around the water bodies. 241/243Am are two major radionuclides which can contribute a great deal to radioactivity for several thousand years. In the present study, 241Am sorption on natural sediment collected from site near a nuclear installation in India, has been investigated under the varying conditions of pH (3–10) and ionic strength [I = 0.01–1 M (NaClO4)]. The sorption of Am increased with pH of the aqueous medium [10% (pH 2) to ~100% (pH 10)], which was explained in terms of the increased negative surface charge on the sediment particles. There was marginal variation in Am(III) sorption with increased ionic strength (within error limits) of the aqueous medium suggesting inner-sphere complexation/sorption process. Sediment was characterized for its elemental composition and structural phases using Energy Dispersive X-Ray (SEM-EDX) and X-Ray Diffraction (XRD) techniques. Zeta-potential measurement at I = 0.1 M (NaClO4) suggested that Point of Zero Charge (pHPZC) was ~2, indicating the presence of silica as major component in the sediment. Kurabtov plot using sorption data as a function of pH at fixed I = 0.1 M (NaClO4) indicated the presence of multiple Am(III) species present on the surface. Potentiometric titration of the suspension indicated the presence of mineral oxide like behavior and assuming a generic nature (≡XOH) for all types of surface sites, protonation–deprotonation constants and total number of sites have been obtained. The sorption data has been modeled using 2-pK Diffuse Double Layer Surface Complexation Model (DDL-SCM). ≡XOAm2+ has been identified as the main species responsible for the sorption profile.
Abstract
Sorption of Eu(III), an analogue of trivalent actinides (Am, Cm), by amorphous titania as well as different crystalline phases of titania, namely anatase and rutile, have been studied as a function of pH, using 154Eu (half life = 8.8 yrs, Eγ = 123,247 keV) as a radiotracer. The objective of this study was to investigate the effect of the crystalline phase of the titania on their sorption behaviour towards the metal ion. Amorphous titania was prepared by organic route and was converted into anatase and rutile by heating at elevated temperatures based on the differential thermal analysis studies. Eu(III) sorption by all forms of titania rises sharply with the pH of the suspension, with the sorption edge shifting to higher value in the order; amorphous < anatase < rutile. However, the normalization of the sorption data to the surface area of the sorbents resulted in the overlapping of the sorption curves for amorphous and anatase phases, with the data being higher for rutle in the lower pH region, indicating the effect of the crystal phase on sorption behaviour of Eu(III).