Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: T Nakagata x
  • Medical and Health Sciences x
  • Refine by Access: All Content x
Clear All Modify Search

The benefit of body weight resistance exercise with slow movement (BWRE-slow) for muscle function is well-documented, but not for energy metabolism. We aimed to examine physiological responses [e.g., energy expenditure (EE), respiratory exchange ratio (RER), and blood lactate (La)] during and after BWRE-slow compared to EE-matched treadmill walking (TW). Eight healthy young men (23.4 ± 1.8 years old, 171.2 ± 6.2 cm, 63.0 ± 4.8 kg) performed squat, push-up, lunge, heel-raise, hip-lift, and crunch exercises with BWRE-slow modality. Both the concentric and eccentric phases were set to 3 s. A total of three sets (10 repetitions) with 30 s rest between sets were performed for each exercise (26.5 min). On another day, subjects walked on a treadmill for 26.5 min during which EE during exercise was matched to that of BWRE-slow with the researcher controlling the treadmill speed manually. The time course changes of EE and RER were measured. The EE during exercise for BWRE-slow (92.6 ± 16.0 kcal for 26.5 min) was not significantly different from the EE during exercise for TW (95.5 ± 14.1 kcal, p = 0.36). BWRE-slow elicited greater recovery EE (40.55 ± 3.88 kcal for 30 min) than TW (37.61 ± 3.19 kcal, p = 0.029). RER was significantly higher in BWRE-slow during and 0–5 min after exercise, but became significantly lower during 25–30 min after exercise, suggesting greater lipid oxidation was induced about 30 min after exercise in BWRE-slow compared to TW. We also indicated that BWRE-slow has 3.1 metabolic equivalents in average, which is categorized as moderate-intensity physical activity.

Restricted access

This study aimed to investigate the effects of a gradually decreasing intensity training from that corresponding to maximal anaerobic power (MAnP) to that of near maximal oxygen uptake () (decrescent intensity training) on MAnP, maximal accumulated oxygen deficit (MAOD), and in untrained young men. Seventeen untrained young men were randomly divided into either a training (TR; n = 9) group or a control (CON; n = 8) group. The TR group performed the decrescent intensity training, whereas the CON group did not perform any exercises. The mean training time per session throughout the training period was 275 ± 135 s. There was a Group × Time interaction for both absolute and relative (p < 0.01) values of , MAOD, and MAnP. The TR group had significantly increased values for all variables after the 8-week training program, and the relative values of all variables were significantly higher in the TR group than in the CON group. Muscle thicknesses in the anterior and posterior aspects of the thigh and maximal isokinetic knee extension and flexion strengths improved only in the TR group (p < 0.05). A single-exercise training with gradually decreasing intensity from that corresponding to the MAnP to that of approximately 100% improves MAnP, MAOD, and concurrently, despite the short training time per session.

Restricted access