Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: T. Csoknyai x
  • Materials and Applied Sciences x
  • Refine by Access: All Content x
Clear All Modify Search


In the beginning of August 2009 a long-term monitoring started in a recently built passive house near Isaszeg. The first results were presented in the last year's conference. The present paper gives an overview about a whole-year data evaluation focusing on energy consumption. During the first year of building occupancy three types of heat suppliers and two types of heat exchangers in the ventilation systems were applied and monitored, thus different heating options could be compared.

Restricted access


The recast of the Energy Performance Building Directive contains a new article about the need to increase the number of buildings which go beyond current national requirements, and to draw up national plans for increasing the number of nearly zero-energy buildings (nZEB) with the final target that by 2020 all new buildings shall be nearly-zero energy. Nearly zero-energy buildings are buildings with a very high energy performance, where the remaining low energy demand can be supplied to a significant extent by renewable energy.

In this paper, a detached house complying with the proposed Hungarian nZEB requirements is analysed. The life cycle cost and life cycle environmental impacts of the building are assessed for various building service systems to optimise the building design.

Restricted access

The management of an urban context in a Smart City perspective requires the development of innovative projects, with new applications in multidisciplinary research areas. They can be related to many aspects of city life and urban management: fuel consumption monitoring, energy efficiency issues, environment, social organization, traffic, urban transformations, etc.

Geomatics, the modern discipline of gathering, storing, processing, and delivering digital spatially referenced information, can play a fundamental role in many of these areas, providing new efficient and productive methods for a precise mapping of different phenomena by traditional cartographic representation or by new methods of data visualization and manipulation (e.g. three-dimensional modelling, data fusion, etc.). The technologies involved are based on airborne or satellite remote sensing (in visible, near infrared, thermal bands), laser scanning, digital photogrammetry, satellite positioning and, first of all, appropriate sensor integration (online or offline).

The aim of this work is to present and analyse some new opportunities offered by Geomatics technologies for a Smart City management, with a specific interest towards the energy sector related to buildings. Reducing consumption and CO2 emissions is a primary objective to be pursued for a sustainable development and, in this direction, an accurate knowledge of energy consumptions and waste for heating of single houses, blocks or districts is needed.

A synoptic information regarding a city or a portion of a city can be acquired through sensors on board of airplanes or satellite platforms, operating in the thermal band. A problem to be investigated at the scale

A problem to be investigated at the scale of the whole urban context is the Urban Heat Island (UHI), a phenomenon known and studied in the last decades. UHI is related not only to sensible heat released by anthropic activities, but also to land use variations and evapotranspiration reduction. The availability of thermal satellite sensors is fundamental to carry out multi-temporal studies in order to evaluate the dynamic behaviour of the UHI for a city.

Working with a greater detail, districts or single buildings can be analysed by specifically designed airborne surveys. The activity has been recently carried out in the EnergyCity project, developed in the framework of the Central Europe programme established by UE. As demonstrated by the project, such data can be successfully integrated in a GIS storing all relevant data about buildings and energy supply, in order to create a powerful geospatial database for a Decision Support System assisting to reduce energy losses and CO2 emissions.

Today, aerial thermal mapping could be furthermore integrated by terrestrial 3D surveys realized with Mobile Mapping Systems through multisensor platforms comprising thermal camera/s, laser scanning, GPS, inertial systems, etc. In this way the product can be a true 3D thermal model with good geometric properties, enlarging the possibilities in respect to conventional qualitative 2D images with simple colour palettes.

Finally, some applications in the energy sector could benefit from the availability of a true 3D City Model, where the buildings are carefully described through three-dimensional elements. The processing of airborne LiDAR datasets for automated and semi-automated extraction of 3D buildings can provide such new generation of 3D city models.

Restricted access