# Search Results

## You are looking at 1 - 3 of 3 items for :

• Author or Editor: T. F. Xie
• Mathematics and Statistics
• Refine by Access: All Content
Clear All Modify Search

## The asymptotic property of approximation to |x| by Newman's rational operators

Acta Mathematica Hungarica
Authors:
T.F. Xie
and
S.P. Zhou

## Abstract

Let
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$a = e^{ - 1/\sqrt n } ,p(x) = \Pi _{k = 1}^{n - 1} (a^k + x),r_n (x) = x\frac{{p(x) - p( - x)}} {{p(x) + p( - x)}}$$ \end{document}
. The present note gives the asymptotoc formula of max
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathop {\max }\limits_{|x| \leqq 1} \left| {|x| - r_n (x)} \right|$$ \end{document}
.
Restricted access

## On simultaneous approximation to a differentiable function and its derivative by Pál-type interpolation polynomials

Acta Mathematica Hungarica
Authors:
T. F. Xie
and
S. P. Zhou
Restricted access

## A remark on approximation by monotone sequences of polynomials

Acta Mathematica Hungarica
Authors:
T. F. Xie
and
S. P. Zhou
Restricted access