Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Tamás Szabados x
  • Mathematics and Statistics x
  • Refine by Access: All Content x
Clear All Modify Search

Summary  

In this paper we define Brownian local time as the almost sure limit of the local times of a nested sequence of simple, symmetric random walks. The limit is jointly continuous in \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $(t,x)$ \end{document} . The rate of convergence is \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $n^{\frac14} (\log n)^{\frac34}$ \end{document} that is close to the best possible. The tools we apply are almost exclusively from elementary probability theory.

Restricted access

Abstract  

The exponential functional of simple, symmetric random walks with negative drift is an infinite polynomial Y = 1 + ξ1 + ξ1ξ2 + ξ1ξ2ξ3 + ⋯ of independent and identically distributed non-negative random variables. It has moments that are rational functions of the variables μ k = E k ) < 1 with universal coefficients. It turns out that such a coefficient is equal to the number of permutations with descent set defined by the multiindex of the coefficient. A recursion enumerates all numbers of permutations with given descent sets in the form of a Pascal-type triangle.

Restricted access

A basic model in financial mathematics was introduced by Black, Scholes and Merton in 1973. A classical discrete approximation in distribution is the binomial model given by Cox, Ross and Rubinstein in 1979. In this work we give a strong (almost sure, pathwise) discrete approximation of the BSM model using a suitable nested sequence of simple, symmetric random walks. The approximation extends to the stock price process, the value process, the replicating portfolio, and the greeks. An important tool in the approximation is a discrete version of the Feynman-Kac formula as well.

Our aim is to show that from an elementary discrete approach, by taking simple limits, one may get the continuous versions. We think that such an approach can be advantageous for both research and applications. Moreover, it is hoped that this approach has pedagogical merits as well: gives insight and seems suitable for teaching students whose mathematical background may not contain e.g. measure theory or stochastic analysis.

Restricted access