# Search Results

## You are looking at 1 - 4 of 4 items for :

• Author or Editor: Tamás Szabados
• Mathematics and Statistics
• Refine by Access: All Content
Clear All Modify Search

## Saul Stahl, Real Analysis: A Historical Approach

Periodica Mathematica Hungarica
Author:
Restricted access

## An elementary approach to Brownian local time based on simple, symmetric random walks

Periodica Mathematica Hungarica
Authors:
and
Balázs Székely

## Summary

In this paper we define Brownian local time as the almost sure limit of the local times of a nested sequence of simple, symmetric random walks. The limit is jointly continuous in \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $(t,x)$ \end{document} . The rate of convergence is \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $n^{\frac14} (\log n)^{\frac34}$ \end{document} that is close to the best possible. The tools we apply are almost exclusively from elementary probability theory.

Restricted access

## Moments of an exponential functional of random walks and permutations with given descent sets

Periodica Mathematica Hungarica
Authors:
and
Balázs Székely

## Abstract

The exponential functional of simple, symmetric random walks with negative drift is an infinite polynomial Y = 1 + ξ1 + ξ1ξ2 + ξ1ξ2ξ3 + ⋯ of independent and identically distributed non-negative random variables. It has moments that are rational functions of the variables μ k = E k ) < 1 with universal coefficients. It turns out that such a coefficient is equal to the number of permutations with descent set defined by the multiindex of the coefficient. A recursion enumerates all numbers of permutations with given descent sets in the form of a Pascal-type triangle.

Restricted access

## Strong approximation of Black-Scholes theory based on simple random walks

Studia Scientiarum Mathematicarum Hungarica
Authors:
Zsolt Nika
and