Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: V. Tsoupko-Sitnikov x
- Chemistry and Chemical Engineering x
- Refine by Access: All Content x
Abstract
Dependence upon pH of Ac and Th distribution coefficients between the cation exchange resin and buffer citrate solutions had been investigated; the optimal conditions are suggested for effective separation of the elements in this system. These results are in successful accordance with such conditions calculated on the basement of Ac and Th citrate complex formation constants.The generator method for225 Ac periodical separation from229 Th samples is developed.229 Th storage in solution between separations excludes the contamination of actinium final solution with radiolysis products and provides 100-% yield of this isotope and its high radiochemical purity. The parent nuclide loss after continuous use of the generator does not take place.
Abstract
Incineration studies of plutonium were carried out at the Synchrophasotron of the Joint Institute for Nuclear Research (JINR), Dubna, using proton beams with energies of 0.53 GeV and 1.0 GeV. Solid lead targets (8 cm in diameter and 20 cm long) were surrounded with 6 cm thick paraffin as neutron moderator and then irradiated. The transmutation of 239 Pu and the associated production of fission products 91 Sr, 92 Sr, 97 Zr, 99 Mo, 103 Ru, 105 Ru, 129 Sb, 132 Te, 133 I, 135 I and 143 Ce were studied in the present work. The plutonium samples (each 449 mg) were placed on the outer surface of moderator. For 1.0 GeV proton beam, the fission rate of 239 Pu is 0.0032 atoms per proton in one gram plutonium samples, for 0.53 GeV proton, this value is 0.0022. The experimental uncertainty is about 15%. The experiments are compared to two theoretical model calculations with moderate success, using the Dubna Cascade Model (CEM) and the LAHET code. The practical incineration rate of 239 Pu is very high. For example: if one uses 10 mA, 1 GeV proton beams under the same (fictive) experimental conditions, the incineration rate of 239 Pu via fission is 3 mg out of the 449 mg sample per day. For 0.53 GeV protons the corresponding rate is 2 mg per day.
Abstract
An extended U/Pb-assembly was irradiated with an extracted beam of 2.52 GeV deuterons from the Nuclotron accelerator of the Laboratory of High Energies within the JINR in Dubna, Russia. The lay-out of this experiment and first results are reported. The Pb-target (diameter 8.4 cm, length 45.6 cm) is surrounded by a natU-blanket (206.4 kg) and used for transmutation studies of hermetically sealed radioactive samples of 129I, 237Np, 238Pu and 239Pu. Estimates of transmutation rates were obtained as result of measurements of gamma-activities of the samples. Information about the spatial and energy distribution of neutrons in the volume of the lead target and the uranium blanket was obtained with sets of activation threshold detectors (Al, Y and Au) and solid state nuclear track detectors (SSNTD). An electronic 3He neutron detector was tested on-line. A comparison of experimental data with theoretical model calculations using the MCNPX program was performed yielding satisfactory results.