Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: H Jee x
  • Refine by Access: All Content x
Clear All Modify Search

We used the model of eccentric contraction of the hindlimb muscle by Ochi et al. to examine the role of eccentric contraction in muscle plasticity. This model aims to focus on stimulated skeletal muscle responses by measuring tissue weights and tracing the quantities of αB-crystallin and tubulin. The medial gastrocnemius muscle (GCM) responded to electrically induced eccentric contraction (EIEC) with significant increases in tissue weight (p < 0.01) and the ratio of tissue weight to body weight (p < 0.05); however, there was a decrease in soleus muscle weight after EIEC. EIEC in the GCM caused contractile-induced sustenance of the traced proteins, but the soleus muscle exhibited a remarkable decrease in α-tubulin and a 19% decrease in αB-crystallin. EIEC caused fast-to-slow myosin heavy chain (MHC) isoform type-oriented shift within both the GCM and soleus muscle. These results have shown that different MHC isoform type-expressing slow and fast muscles commonly undergo fast-to-slow type MHC isoform transformation. This suggests that different levels of EIEC affected each of the slow and fast muscles to induce different quantitative changes in the expression of αB-crystallin and α-tubulin.

Restricted access


It is impossible to detect 14C and 3H by direct methods such as γ-spectroscopy because they are pure b-emitters and thus they are classified as hard to measure nuclides (HTM). In this paper the analysis results of 14C and 3H in the low level radioactive wastes (LLWs), including spent ion exchange resin, evaporated bottom and sludge are presented. The LLWs were generated by three nuclear power plants (NPPs), in Korea all with pressurized water type reactors (PWRs). A simultaneous separation procedure for 14C and 3H in LLWs was established by wet oxidation-acid stripping. A liquid scintillation analyzer was used for the measurement of 14C and 3H. It was found that the recovery of 14C and 3H was 82-99 and 78-103%, respectively, by wet oxidation-acid stripping with diluted standard solutions. At the lowest injection of 14C and 3H, i.e., at 1.44 Bq for 14C and 1.22 Bq for 3H, the minimum detectable activity (MDA) of 14C and 3H was calculated as 0.88 and 0.78 Bq/g, respectively, for the minimum allowable sample weight, using wet oxidation and 16 wt% H2SO4 acid. By the wet oxidation-16 wt% H2SO4 stripping method no interfering nuclides were detected in the trapping solution of 14CO2 and the distillate of 3H. The activity concentration range of 14C in the analyzed samples, i.e., spent ion exchange resin, evaporated bottom and sludge, was 0.17-110,000, 8.4-1380 and 0.1-10,006 Bq/g, respectively, and that of 3H in the same was from no detectable to 769, 134-14,383 and 0.7-4820 Bq/g, respectively.

Restricted access