Search Results
You are looking at 1 - 10 of 35 items for :
- Author or Editor: H. Sun x
- Chemistry and Chemical Engineering x
- Refine by Access: All Content x
Abstract
To effectively extract organohalogens from human hair, two factors, the extracting time and hair length on the extraction efficiency of organohalogens were studied by neutron activation analysis (NAA) and gas chromatograph-electron capture detector (GC-ECD), respectively. Furthermore, the concentrations of extractable organohalogens (EOX) and extractable persistent organohalogens (EPOX) in hair samples from angioma and control babies were also measured by the established method. The results indicated that the optimal Soxhlet-extraction time for EOX and EPOX in hair was from 8 to 11 hours, and the extraction efficiencies for organochlorine pesticides in hair were in the order of powder >2 mm>5 mm. Also, the mean levels of EOC1 and EPOC1 in hair of the angioma babies were significantly higher than those in the control babies (P EOC1<0.01; P EPOC1<0.05), which implied the possible relationship between the environmental pollution and angioma.
Abstract
Hydrated methanesulfonates Ln(CH3SO3)3 nH2O (Ln=La, Ce, Pr, Nd and Yb) and Zn(CH3SO3)2 nH2O were synthesized. The effect of atmosphere on thermal decomposition products of these methanesulfonates was investigated. Thermal decomposition products in air atmosphere of these compounds were characterized by infrared spectrometry, the content of metallic ion in thermal decomposition products were determined by complexometric titration. The results show that the thermal decomposition atmosphere has evident effect on decomposition products of hydrated La(III), Pr(III) and Nd(III) methanesulfonates, and no effect on that of hydrated Ce(III), Yb(III) and Zn(II) methanesulfonates.
Abstract
Prompt k 0-factors relative to chlorine and relative g-emission intensities were determined for the strong non-1/v absorbers 113Cd, 149Sm, 151Eu,155Gd and 157Gd. Measurements were performed using the SNU-KAERI prompt gamma activation analysis (PGAA) facility at the Korea Atomic Energy Research Institute (KAERI). For proper experimental determination of the prompt k 0-factors, the effective g-factor and cadmium ratio were taken into account, in consideration of the effects from the non-1/v capture cross section and neutron spectrum in the thermal and epithermal energy region. By using the actual spectrum of the neutron beam in this study, the effective g-factor was obtained by calculation, and the influence of epithermal neutrons on the capture rate was corrected by measuring the cadmium ratio for each non-1/v target isotope. The measured prompt k 0-factors were used to check the consistency between the existing dataset of the absolute g-emission intensity and the 2200 m/s capture cross section for these isotopes.
Abstract
Doppler broadening of a 477.6 keV line combined with a recoil of an excited Li nucleus is the characteristic of PGAA, which leads to complicated gamma-ray spectrum which is difficult to analyze. For this solution, a modified algorithm for an automated analysis of the Doppler-broadened peak spectrum is presented. The modified algorithm maintained the consistency of a Doppler-broadened peak with the finest analysis algorithm used for a Gaussian gamma-ray peak analysis in the HYPERMET code.
Abstract
The present study explores the feasibility of the determination of phosphorus at the extreme trace levels in high-purity silicon by radioreagent method. After silicon dissolution with hydrofluoric and nitric acids and matrix volatilization, 12-molybdophosphoric acid (12-MPA) is formed by the addition of the radioreagent,99MoO 4 2– , in nitric acid medium and then extracted into isobutyl acetate. By plotting the phosphorus content against the radioactivity of99Mo in the organic phase, a linear relationship persisting down to 5 ng is obtained. Special effort has been made to the elimination of the unreacted99MoO 4 2– reagent and the optimal control of phosphorus blank introduced through the multistage analytical procedure in order to ensure reliable determination of phosphorus at the ppb level.
Abstract
The concentration of 8 REEs (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu) in 17 species of plants and their host soil, which were collected from a rare earth ore area located in the south of China, have been determined by INAA. The chondritic normalized REE patterns for different parts of plants (e.g., leaf stem and root) and their host soils were studied. The results showed that the concentration levels of REE for most plants in the sampling area were elevated. Particularly, the leaves of the fern (Dicranopteris dichotoma) contain extremely high concentration of the total REE (675–3358 g/g) Generally, these REE distribution patterns in every part of plants were very similar and reflected the characteristics of their host soils. However, the chondritic normalized REE patterns in some plants relative to the host soil revealed obvious fractionation, such as the depletion of the heavy REE (for fernCitrus reticulata andBrassia campestris), the heavy REE enrichment (forCamellia sinensis, Camellia oleifera andZiziphus) and the Ce positive anomaly (forGardenia jasminoides).
Abstract
Biochemical techniques, including pH variation, outsalting, ultracentrifugation, gel filtration chromatography and electrophoresis, etc., have been employed together with instrumental neutron activation analysis (INAA) to study the rare earth elements (REE) bound proteins in the natural plant fern,Dicranopteris dichitoma. INAA was also used to identify whether the proteins were bound firmly with REE. The results obtained show that two REE bound proteins (RBP-I and RBP-II) have been separated. The molecular weight of RBP-I on Sephadex G-200 gel column is about 8·105 Daltons and that of RBP-II is less than 12,400 Daltons, respectively. However, SDS-PAGE of the two proteins shows that they mainly have two protein subunits with MW 14,100 and 38,700 Daltons. They are probably conjugated proteins, glycoproteins with different glyco-units.
Abstract
In this paper studies on the oscillation regularity of the classical B–Z reaction system, and the calorimetric curves of the reaction system measured at three temperatures, 25, 27 and 29°C are described. A new way is presented for studying the regularity properties of chemical oscillation phenomena from the viewpoint of reaction heat effects.
Abstract
The concentrations and distributions of total halogen (TX), extractable organohalogen (EOX) and extractable persistent organohalogen (EPOX) were determined in 20 kinds of yogurt specimens collected from Chinese supermarkets using neutron activation analysis (NAA) and gas chromatography equipped with a 63Ni electron capture detector (GC-ECD). The results indicated that the halogens in yogurt mainly existed as non-extractable organohalogen compounds. About 25–30% of EOX was EPOX. EOCl and EPOCl were the main organohalogen species in yogurt. The average concentration of the identified organochlorine, such as organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), was below 4% of EPOCl.
Abstract
AP/HTPB based composite propellants with additives such as ammonium oxalate (AO), mixture of ammonium oxalate and strontium carbonate (SC) was investigated by burning rate, TG-DTG and FTIR experiments. The results show that the burning rates of these propellants are decreased significantly. TG-DTG experiments indicate that decomposition temperatures of AP with these additives are increased. Furthermore, the activation energy of the decomposition reaction of AP is also increased in the presence of AO or AO/SC. These results show that AO or AO/SC restrains the decomposition of AP. The burning rates of these propellants are decreased. The burning rate temperature sensitivity of AP/HTPB based propellants is reduced significantly by the addition of AO or AO/SC. But the effect of AO is less than that of AO/SC. AO/SC is better effect to reduce temperature sensitivity and at the same time, to reduce pressure exponent. The reduced heat release at the burning surface of AP/HTPB/AO is responsible for the reduced temperature sensitivity. Synergetic action is probably produced between AO and SC within AP/HTPB based propellants in the pressure range tested. This synergetic effect causes the heat release to reduce and the burning surface temperature to increase. Moreover, it makes the net exothermal reaction of condensed phase become little dependent on T 0. Thus, the burning rate temperature sensitivity is reduced.