Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: M. G. Russo x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search
Journal of Thermal Analysis and Calorimetry
Authors:
M. Turco
,
G. Bagnasco
,
G Russo
,
P. Ciambelli
,
P. Patrono
,
M. A. Massucci
, and
S. Vecchio

The ion exchange technique was employed for the preparation of VO2+ modified titanium phosphates as catalysts for the selective reduction of NO with NH3. The samples were prepared by contacting with a vanadyl sulphate solution different precursor materials, amorphous, crystalline or sodium half exchanged titanium phosphate. The vanadium contents of modified phosphates were in the range 0.08–2.3 wt%. XRD and thermal analysis TG/DTA showed that vanadium loading does not cause structural modification in hydrogen titanium phosphate. A vanadyl containing phase was obtained when half sodium titanium phosphate was employed. The NH3 TPD measurements indicated the presence of a wide distribution of NH3 adsorbing sites with medium-high strength. Catalytic activity measurements were performed under dilute conditions. It was found that the presence of vanadium even in low amounts strongly promote the catalytic activity.

Restricted access

Abstract  

Capillary electrophoresis has been used to separate metal ions characteristically associated with nuclear fission. Electrokinetic injections and transient isotachophoretic techniques were employed to increase sample loading and provide on-column concentration of the analyte. On-line concentration factors of approximately 700-fold have been achieved. Indirect-UV absorbance, on-line radioactivity, and indirect laser-induced fluorescence detection were used to monitor analytes of interest. The radioactivity detector consists of a plastic scintillator and photomultiplier tube with a 4π detection geometry. The efficiency was determined to be approximately 80%, enabling samples resident in the detector window for 0.1 minutes to be reliably assayed. Detection of152Eu and137Cs was achieved at the low nCi level. Indirect fluorescence was performed with quinine sulfate as the background fluorophor with α-hydroxysobutyric acid added as a complexing agent. An argon ion laser was used as the excitation source with a diode array detector. Limits of detection for La3+, Ce3+, Pr3+, Nd3+, Sm3+, and Eu3+ were determined to be in the sub — 10 ppb range (6–11 nM) with indirect laser-induced fluorescence detection.

Restricted access

Refuse derived fuels pyrolysis

Influence of process temperature on yield and products composition

Journal of Thermal Analysis and Calorimetry
Authors:
S. Casu
,
S. Galvagno
,
A. Calabrese
,
G. Casciaro
,
M. Martino
,
A. Russo
, and
Sabrina Portofino

Summary Refuse derived fuels (RDF) characterization and pyrolysis behaviour, carried out by means of thermogravimetric analysis, infrared and mass spectroscopy, are presented. Thermal degradation of RDF takes place through three main mass loss stages; the analyses of evolved gas allow us to discriminate the contributions of the different fractions (paper, LDPE, wood, rubber, etc.) to the global decomposition. Furthermore thermogravimetry (TG) was used for the determination of kinetic parameters, using the differential method. In order to set up the conditions of production of a good quality pyrolysis gas, the operating conditions of RDF in a pyrolysis reactor have been simulated. Data show that the volatile fraction grows with the temperature, together with the relative conversion, and that light volatile fraction (hydrogen, ethyne, etc.) gets richer, at the expense of superior homologous hydrocarbons.

Restricted access