Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Z. Gráczer x
  • Refine by Access: All Content x
Clear All Modify Search

We determined a new one-dimensional P-wave velocity model for the territory of Hungary based on the first arrival times of local earthquakes. During the computations 910 P-wave arrival data of 86 events from the time period between 1985 and 2010 have been used. The applied methodology is a combination of a genetic algorithm based procedure and an iterative linearized joint inversion technique. The preferred velocity profile has been chosen from the best models based on the data of a series of controlled explosions.The resulting flat-layered model consists of three crustal layers and a half-space representing the uppermost mantle. The crustal compressional velocities vary in the range of 5.3-6.3 km/s, while the uppermost mantle velocity was found to be 7.9 km/s. The Moho is located at an average depth of 26 km.Additionally, the V p/V s ratio was calculated by the Wadati-method, which gave a value of 1.74±0.05.

Restricted access

Low velocity surface layers can significantly increase ground accelerations during earthquakes. When saturated sandy sediments are present, because of pore pressure increase, decrease of soil strength or even liquefaction can occur. Some volume change follows the dissipation of excess pore pressure after the earthquake resulting surface settlements. To determine the liquefaction probability and post-liquefaction settlement is very important for critical facilities e.g. for the site of Paks Nuclear Power Plant, Hungary. Pore pressure increase and so the liquefaction and surface settlements depend on the characteristics of seismic loading and soil parameters. To quantify the extent of these phenomena is rather difficult. Uncertainties arise both from the probabilistic nature of the earthquake loading and from the simplifications of soil models as well. In the paper, the most important semi-empirical and dynamical effective stress methods for liquefaction and post-liquefaction settlement assessment are summarized. Most significant contributors to the uncertainties are highlighted, and particular examples through the investigation of Paks NPP site are given. Finally, a probabilistic procedure is proposed where the uncertainties will be taken into account by applying a logic tree methodology. At the same time, the uncertainties are reduced by the use of site-specific UHRS and stress reduction factors.

Restricted access