Search Results
A simple esterification reaction is used to demonstrate standard procedures for determining the thermokinetic parameters of an exothermic reaction from adiabatic calorimetric data. The influence of variations in the heat capacity of the sample due to changes in temperature and concentration is explored. Shortcomings in the simple interpretation of adiabatic data are identified and isothermal heatflow calorimetry is used to reveal autocatalytic effects which were not apparent from the adiabatic experiments. A more rigourous interpretation of the adiabatic and isothermal data is outlined and used to predict the conditions which can lead to exothermic runaway in a batch reactor. Mathematical simulation of the conditions in a jacketed reactor is used to demonstrate the importance of developing reliable kinetic expressions before assessing the safety of a batch process.
Abstract
An adiabatic calorimetry was used for some investigations of equilibrium and non-equilibrium phase transitions. For one of the substances studied (4,4′-di-n-heptyloxyazoxybenzene) it was possible to determine temperature dependence of an order parameter and number of clusters of high temperature phase in a region of a phase transition. For another substance (liquid 3,4 dimethylpiridine) an anomaly on the specific heat curves was interpreted as being responsible for a decay of molecules’ clusters. Non-equilibrium phase transitions were investigated for some liquid crystal substances. The process of transformation between metastable and stable phases was described quantitatively. The conclusions obtained concern the stability of metastable phases.
Modulated differential scanning calorimetry in the glass transition region
VI. Model calculations based on poly(ethylene terephthalate)
Abstract
Temperature-modulated calorimetry (TMC) allows the experimental evaluation of the kinetic parameters of the glass transition from quasi-isothermal experiments. In this paper, model calculations based on experimental data are presented for the total and reversing apparent heat capacities on heating and cooling through the glass transition region as a function of heating rate and modulation frequency for the modulated differential scanning calorimeter (MDSC). Amorphous poly(ethylene terephthalate) (PET) is used as the example polymer and a simple first-order kinetics is fitted to the data. The total heat flow carries the hysteresis information (enthalpy relaxation, thermal history) and indications of changes in modulation frequency due to the glass transition. The reversing heat flow permits the assessment of the first and higher harmonics of the apparent heat capacities. The computations are carried out by numerical integrations with up to 5000 steps. Comparisons of the calculations with experiments are possible. As one moves further from equilibrium, i.e. the liquid state, cooperative kinetics must be used to match model and experiment.
Symposium on Applications of Thermal Analysis and Calorimetry (SATAC-2010)
29th Annual Conference of Indian Council of Chemists, SATAC-29th ICC, December 19–21, 2010
Mukesh Chandra (extreme R) are also seen It is giving me immense pleasure in introducing this special issue of the Journal of Thermal Analysis and Calorimetry based on the papers devoted to Indian Council of Chemists
30 years of research in thermal analysis and calorimetry
A personal review
Abstract
The research in thermal analysis and calorimetry, conducted by the author over the period 1964 to 1993, is summarised and concisely reviewed. The major investigations have focussed on thermal analysis studies of coordination compounds, particularly the metal dithiocarbamate complexes. A significant solution calorimetric study of some metal dithiocarbamate complexes has also been undertaken. DSC has been applied to determine the sublimation enthalpies of many metal dithiocarbamate and metal pentane-2,4-dionate complexes and solution calorimetry has been applied to study the thermochemistry of the latter group of complexes. Thermal analysis investigations of several inorganic molten salt systems have been initiated. Thermometric titrimetry has been applied to study metal-macrocyclic ligand systems in aqueous media and particularly those systems of environmental significance. Temperature calibration standards for TMA have been proposed and TMA has been applied to study the mechanical properties of several common inorganic compounds. DTA has been applied to study a wide variety of phenols and has subsequently been applied as an analytical technique to determine the components of solid state phenol mixtures. Thermometric titrimetry has been applied to determine the phenolic content of wines. A comprehensive thermal analysis study of Australian brown coal has been undertaken, involving the DSC determination of coal specific energy, a TG/DTA study of the coal pyrolysis and combustion processes and a TG/DTA and EGA study of the cation catalytic effect on the coal pyrolysis process. Thermal analysis and calorimetric techniques have been extensively publicised and promoted by the publication of specialist reviews, the presentation of symposia review papers and the oral presentation of short courses, particularly in the SE Asian region. This review essentially reveals the diversity of possible application of thermal analysis and calorimetric techniques and the primary significance of thermodynamic data in the fundamental rationalisation of chemical phenomena.
Polyester yarn spun over a range of wind-up speeds has been characterized using differential scanning calorimetry. Samples prohibited from shrinking during the thermal analysis show slightly smaller heats of fusion and crystallization and reduced cold crystallization temperatures than samples that are free-to-shrink, particularly in the intermediate wind-up speed region. One critical observation made is that the cold crystallization temperature reaches a minimum at some relatively low overall molecular orientation (Δn ∼ 0.020) and fails to decrease further. A likely explanation is that crystallization continuously removes polymer from the melt in the spinline in regions where the local orientation reaches some critically high value.
Polyester yarn spun over a range of wind-up speeds and subsequently drawn at 373 K has been characterized by differential scanning calorimetry. Samples that are constrained from shrinking during the thermal scan respond differently than samples that are free-to-shrink. In the region of intermediate orientation, the constrained samples typically show a lower cold crystallization temperature: In the region of high orientation, the constrained samples typically show a higher melting temperature. The results are quantitatively similar to those based on fibers in which the orientation is imparted directly by high speed spinning.
The technique of heat flow calorimetry was used to study the thermal behaviour of different carbohydrates between 20°C and 270°C. The samples were analyzed by heating in sealed cells. The temperature range in which exothermic reactions, due to thermal decomposition, occurred varied widely depending on the type of carbohydrate investigated. Reaction enthalpies of 44 sugars and polysaccharides are given. Endothermic phenomena, such as fusion or vaporization of crystallized water, were also observed: fusion temperatures and enthalpies of 34 sugars and sugar alcohols are listed. Calorimetric curves showing crystallization of amorphous sucrose, cellobiose and lactose are also presented.
biological processes will be an important issue. Calorimetry is a convenient experimental tool to explore these characteristics, because it permits measuring experimentally one of these energy exchanges, namely heat dissipation. Heat generation
Abstract
Dextran modified with deoxycholic acid (Dex-DCA) was synthesized by grafting DCA along the polymer backbone, with degrees of substitution (DS)—2% and 3%. The thermodynamics of the association processes of the mixed systems is followed by isothermal titration calorimetry for sodium deoxycholate/sodium dodecyl sulfate (NaDCA/NaDS), Dex-DCA with different surfactants—Dex-DCA/NaDS, Dex-DCA/NaDCA, and Dex-DCA/DTAB (dodecyltrimethylammonium bromide). Calorimetric measurements for the micellization processes of the pure surfactants in aqueous solution were also performed for comparison with the results obtained for the mixed systems. We have obtained and herein present the enthalpies of micelle formation and critical micelle concentrations for the referred pure surfactants, as well as the interaction and aggregation enthalpies for the mixed systems-surfactant/polymer. The dependence of the observed aggregation behavior on the surfactant and temperature is discussed in detail. Finally, we should stress that calorimetry allowed us to ascertain a very important fact in polymer/surfactant interaction. From the comparison between NaDCA/NaDS and Dex-DCA/NaDS calorimetric titration curves, we could clearly see that the interaction between Dex-DCA and NaDS is driven by the interaction between the bile acid moiety and the surfactant.