Search Results

You are looking at 91 - 100 of 172 items for :

  • Refine by Access: All Content x
Clear All

Abstract  

The fusion reactor inventory code FISPACT, together with the European Activation File EAF, is the European reference software for calculating the neutron-induced activation of fusion reactor relevant materials. Experimental verifications (benchmarks) of the code predictions have been performed at ENEA Frascati by means of an irradiation facility consisting of a D-T neutron generator and a moderator/reflector structure which is employed to mimic the neutron spectrum at the a fusion device first wall. Various materials (vanadium alloy, SiC, AISI 316, martensitic steel F82H, copper, tungsten, iron, niobium), candidates to be used in a fusion reactor, have been exposed to neutrons produced in the facility (about 109 n cm–2 s–1) and the short and medium-lived induced radioactivity has been measured by gamma-ray spectroscopy. The experimental results have been used to validate the inventory code FISPACT, the physical database EAF, including its uncertainty predictions, and the composition of the material irradiated in particular for its minor elements and impurities. The comparison between calculated (C) and experimental results (E) is reported as C/E values and shows a satisfactory agreement for almost all radionuclides. Radionuclides for which there is not agreement between calculations and experiments are also discussed and an analysis of the causes of the lack of agreement is carried out.

Restricted access

Abstract  

A radiochemical neutro activation analysis procedure has been developed for the determination of sodium and potassium at parts per billion levels in high purity tungsten/titanium alloy material. The procedure involves the use of an anion exchange separation for purifying sodium and potassium activities from the alloy’s matrix activities,46Sc and187W. In addition, the use of two sequential sample loadings on the resin column prior to elution of the matrix activities has been investigated. Irradiation of 200 mg of the alloy results in a sample of nearly 1 Ci which must be handled in a remote manipulation cell. After acid dissolution of the sample, the sample solution in 1M HF was loaded onto the column. Elution of the sodium and potassium was accomplished using 40 ml of 1M HF. Similar loading and elution of the second sample was followed by the elution of matrix activities with a solution of 1M HF+6M HCl. Extensive tracer experimentation was employed to establish the possibility of retaining the matrix activities on the column while a second sample solution was processed, thus greatly increasing the throughput in terms of the number of samples analyzed per day. The detection limits of Na and K using the method developed are 4.0 ppb and 200 ppb, respectively.

Restricted access

Abstract  

Solvent extraction of Cr(VI), Mo(VI), W(VI) and Hf(IV) with 1-phenyl-3-methyl-4-caproyl-pyrazolone-5 (PMCP) in methyl isobutylketone (MIBK), xylene and chloroform (CHCl3) from mineral acid solutions was studied. Chromium(VI) is not extracted from any of the acids studied (HCl, H2SO4 and HClO4). Molybdenum(VI) is quantitatively extracted by the reagent in xylene and CHCl3 from HClO4 and HNO3 solutions. It is also extracted quantitatively by the reagent in MIBK from HCl, HNO3 and H2SO4 solutions but the participation of the diluent as extractant is considerable. Tungsten(VI) is quantitatively extracted in xylene from 9M HClO4 solution. MIBK used as diluent also affects its extraction with PMCP. Hafnium(IV) is not extracted from H2SO4 solutions while it extracts more than 99% at 3M HNO3 and above. The extracted species likely are: MoO2(PMCP)2, WO2(PMCP)2 and Hf(PMCP)4, respectively.

Restricted access

Summary  

We have determined nineteen trace elements in 685 aerosol filter samples collected during 1964-1978 in northern Finland by the Finnish Meteorological Institute. In this paper we present some procedures and results for very short (~25 s), short (~3-54 min), and medium (12-35 h) lived isotopes as determined by epithermal NAA in conjunction with and without Compton suppression. Elements with a Iγ/σthratio are favorable to be determined by epithermal NAA. Silver was determined by a one minute epithermal irradiation because of a very short 110Ag half-life. Antimony, arsenic, cobalt, bromine, indium, iodine, potassium, silicon, tin, tungsten, and zinc were determined by a ten minute epithermal irradiation. For silver determination, samples were counted without transferring the filter from the irradiated vial, however, for ten minute irradiation all samples were transferred to a non-irradiated vial and counted both in the normal and Compton mode by the HPGe gamma-spectrometry system with a decay time of about 10 minutes and counting time of 15 minutes. Each day a maximum of 16 samples were irradiated and immediately following the short counting, these samples were loaded into an automatic sample changer in sequence of irradiation and counted for an hour in both normal and Compton modes. This has proven to be an extremely cost effective measure thus reducing the need to employ long-lived NAA to analyze other elements such as Ag, Co, Sn and Zn and Ag for air pollution source receptor modeling.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: Md. Rahman, Kyung-Sook Kim, Manwoo Lee, Guinyun Kim, Youngdo Oh, Hee-Seock Lee, Moo-Hyun Cho, In Ko, Won Namkung, Van Nguyen, Duc Pham, Tien Kim, and Tae-Ik Ro

Abstract  

We measured isomeric-yield ratios for the 197Au(γ,n)196m,gAu reactions with bremsstrahlung energies of 50-, 60-, 70- MeV, and 2.5-GeV at the two different electron linac of the Pohang accelerator laboratory by using the activation method. The photons were produced when a pulsed electron beam hit a thin tungsten target. The well-known photoactivation method was used and hence the induced activities in the irradiated foils were measured with the high-resolution γ-ray spectrometric system consisting of lithium drifted high-purity Germanium detector and a multichannel analyzer. The measured isomeric-yield ratios for the 197Au(γ,n)196m,gAu reactions were (4.95 ± 0.51) × 10−4, (5.72 ± 0.72) × 10−4, (6.03 ± 0.50) × 10−4, and (9.27 ± 0.83) × 10−4 for 50-, 60-, 70-MeV, and 2.5-GeV bremsstrahlung energies, respectively. The present results measured with the bremsstrahlung energy higher than 60-MeV are the first measurement.

Restricted access

Abstract  

Improved radionuclide generator include a substantially insoluble salt of a radioactive parent which may be directly packed in column for subsequent elution of the daughter radionuclide. An improved 188Re generator was prepared by reacting a radioactive tungsten (188W) as parent radionuclide incorporated with aluminum chloride to obtain an insoluble radioactive aluminum tungstate matrix. The investigated matrix was characterized on the basis of the chemical composition, IR, thermal analysis and mechanical stabilities. The factors affecting the elution performance were studied such as influence of pH, molar ratio and drying temperature. From the obtained data, the molar ratio W:Al was 1.5:1 at pH = 4, the matrix dried at 105 °C for 2 h. Chromatographic and multichannel analysis has been currently used to investigate the radiochemical and radionuclidic purity respectively on eluted 188Re. An elution yield more than 80%, with radiochemical purity <98% and radionuclidic purity <99% with a 188W break through >10−4% of the column. The Al+3 and W contents value were about 2 and 3 μg/mL eluate. The obtained data approved the stability of the prepared generator and its suitability for medical application.

Restricted access

Abstract  

Stainless steel flux wires were used to determine the neutron energy spectra and total flux during the Reactor Accelerator Coupling Experiments (RACE) at The University of Texas at Austin. A LINAC electron accelerator produced 20 MeV electrons at a power of 1.6 kW, which struck a tungsten-copper target to produce bremsstrahlung radiation and photoneutrons. The neutrons produced in the target were multiplied by the subcritical core of a Triga reactor. The purpose of the RACE experiments is to develop a sub-critical accelerator driven system that would be capable of transmuting actinides from spent fuel. Flux measurements were made with 1.58 mm diameter stainless steel wires placed throughout the core between the fuel rods and cadmium covered and uncovered gold and indium foils above the target. The MAXED and GRAVEL computer codes were used to perform the spectrum unfolding. The composition of the stainless steel wires was determined using neutron activation analysis with comparators prior to the flux measurement. The reactions measured in the stainless steel to determine the flux were 50Cr(n,γ)51Cr, 58Ni(n,p)58Co, 54Fe(n,p)54Mn, and 58Fe(n,γ)59Fe. Flux measurements agreed well with an MCNP simulation of the experiment.

Restricted access

Abstract  

The thermal behaviour of the hexamminechromium hexafluorometallates and [Cr(NH3)6]F3. HF·H2O was investigated by non-reciprocal quasi-isobaric thermal analysis, X-ray diffraction and i.r. spectroscopy. Reduction of chromium(III) was not observed, neither during the decomposition [Cr(NH3)6]F3·HF·H2O nor during the decomposition of any of the title hexamminechromium hexafluorometallates. Obviously this reduction is not promoted by the coordinative Cr−N bonds, neither these in the starting materials nor those in the intermediately formed phases. Under non-reciprocal quasi-isobaric conditions, hexamminechromium hexafluorometallates are ideal precursors for preparing mixed cationic fluorides both in the rhombohedral modification and in the modification of the hexagonal tungsten bronze type structure.

Restricted access

Abstract  

Data on the applicability of neutron activation analysis to determine various rare and trace elements and the isotopic abundance of some of them in natural samples are discussed as relevant to the solution of various geological and geochemical problems. For the determination of minute amounts of elements from small weighed quantities of rocks and minerals a number of modifications of neutron activation analysis are used: analysis with the radiochemical separation of individual elements—RNAA (tantalum, tungsten, antimony, arsenic, molybdenum, rhenium, osmium, etc.) and analysis with semiconductor—Ge (Li)—gamma-spectrometry, which is multi-element and non-destructuve—INAA (scandium, europium, tantalum, iron caesium, rubidium, cobalt, antimony, etc.) or the combination of the latter with group radiochemical separation—IRNAA (alkaline, alkaline-earth, rare-earth elements, etc.). First steps have been made towards developing techniques for the determination of the isotopic rations of some elements by means of neutron activation method, e.g., the isotopic ratio of58Fe/54Fe. The accuracy of isotopic ratio determination is 1 to 3 relative per cent.

Restricted access

Eimerian coccidia are the most common parasitic organisms infecting chickens. The feasibility of genetic manipulation of these parasites via electroporation is proven, but this method is cumbersome and time consuming. Here we report our endeavour to develop a rapid and simple transfection method by gene gun. Tungsten particles coated with plasmid DNA encoding enhanced yellow fluorescent protein (EYFP) were used for the bombardment of Eimeria maxima unsporulated oocysts. Seven Mpa (1015 psi) helium pressure, 65 mm target distance and −0.098 Mpa (24.8″ Hg) chamber vacuum were the optimised parameters for bombardment. After sporulation, the bombarded oocysts were inoculated into chickens, and the progeny oocysts were checked under fluorescent microscope and subjected to genomic DNA extraction, which was used either for polymerase chain reaction (PCR) amplification or plasmid rescue assay. Although the expression of EYFP was not observed, the gene was amplified from both genomic DNA and the rescued plasmid, suggesting that the plasmid DNA existed in the form of episome. These results are encouraging for the genetic processing of the sporogony stage of eimerian parasites.

Restricted access