Search Results

You are looking at 91 - 100 of 192 items for :

  • "isoconversional methods" x
  • Refine by Access: All Content x
Clear All

Abstract  

The thermooxidative degradation of poly(vinyl chloride) (PVC), chlorinated polyethylene (CPE) and PVC/CPE blend 50/50 was investigated by means of dynamic and isothermal thermogravimetric analysis in the flowing atmosphere of air. To estimate the thermooxidative stability of the samples the characteristics of thermogravimetric (TG) curves were used. Kinetic parameters (the apparent activation energy E and preexponential factor Z) were calculated after isoconversional method for the first stage of dynamic degradation where dehydrochlorination (DHCl) of PVC and/or CPE is the main degradation reaction. Despite the chemical resemblance, the degradation mechanisms of CPE and PVC are different, as a consequence of differences in microregularity of the corresponding polymer chains. The addition of Ca/Zn carboxylates as well as the ratio of Ca and Zn carboxylates have considerably different influence on the investigated polymers.

Restricted access

Abstract  

The effect of γ-radiation on the cis-1,4-polyisoprene in the presence of oxygen is investigated by ATR-FTIR technique and non-isothermal DSC measurements. FTIR measurements have shown that the formation of hydroperoxides, ketones, alcohols and/or ethers is apparent already at lower, 20–50 kGy, doses of γ-radiation and it increases significantly with the exposure time. Besides, lactones, anhydrides, peresters, carboxylic acids, and esters are formed, too. Spectral changes in the region of C=C conjugated double bonds indicate a formation of shorter polyene structures and aromatic rings. Kinetic parameters describing the temperature dependence of the induction period have been obtained from DSC measurements using the isoconversional method. Residual stabilities have been calculated in order to characterize the gamma radiation effect on polyisoprene thermooxidative stability. Both methods proved that doses lower than 50 kGy do not cause severe changes in polymer properties.

Restricted access

Summary The aim of this work is to develop a simplified, though rigorously based thermogravimetric analysis (TG) method to estimate intrinsic reactivity parameters (activation energy, E, and pre-exponential factor, A) for the oxidation in air of engineering carbonaceous materials. To achieve this aim, a modified Coats-Redfern method for analysing linear curves has been devised. The new method assumes first-order reaction kinetics with respect to carbon, and uses a statistical criterion to estimate an ‘optimum’ heating rate. For the oxidation in air of a model carbon, an optimum rate of 27 K min-1 was determined, at which E=125.8 kJ mol-1. This is in good agreement with activation energies obtained using established, though more limited model-free or isoconversional methods.

Restricted access

Abstract  

The two complexes of [Ln(CA)3bipy]2 (Ln = Tb and Dy; CA = cinnamate; bipy = 2,2′-bipyridine) were prepared and characterized by elemental analysis, infrared spectra, ultraviolet spectra, thermogravimetry and differential thermogravimetry techniques. The thermal decomposition behaviors of the two complexes under a static air atmosphere can be discussed by thermogravimetry and differential thermogravimetry and infrared spectra techniques. The non-isothermal kinetics was investigated by using a double equal-double steps method, the nonlinear integral isoconversional method and the Starink method. The mechanism functions of the first decomposition step of the two complexes were determined. The thermodynamic parameters (ΔH , ΔG and ΔS ) and kinetic parameters (activation energy E and the pre-exponential factor A) of the two complexes were also calculated.

Restricted access

Abstract  

Thermogravimetric techniques have been used to study the kinetics of thermal deamination of tris(ethylenediamine)nickel(II) sulphate. The complex was synthesized and characterized by various chemical and spectral techniques. Thermal decomposition studies were carried at different heating rates (5, 10, 15 and 20°C min−1) in dynamic air. The complex undergoes a four-stage decomposition pattern. The stages are not well resolved. Decomposition path can be interpreted as a two-stage deamination, and a two-stage decomposition. Reaction products at each stage were separated and identified by means of IR and XRD. The morphology of the complex and the residue were studied by means of SEM. Final residue of the decomposition was found to be crystalline NiO. The deamination kinetics was studied using model-free isoconversional methods viz., Friedman, Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) methods. It is observed that the activation energy varies with the extent of conversion; indicating the complex nature of the deamination reaction.

Restricted access

Abstract  

A common scepticism towards the application of many product formulations results from the fact that their long-term stability is difficult to predict. In the present study we report on a new approach of kinetic analysis of the oxidation reactions of natural rubbers with and without stabiliser in an oxygen atmosphere at moderate temperatures using CL measurements carried out on a newly-developed instrumentation. The kinetic parameters of the oxidation process, calculated from the chemiluminescence’s signals by means of the differential isoconversional method of Friedman, were subsequently applied for the simulation of the rubber aging under different temperature profiles. The presented results are the first stage of research by using the chemiluminescence method to measure the oxidative aging of rubber and predicting the life time of rubber items.

Restricted access

Abstract  

The thermo-oxidative degradation of a parchment recent manufactured from a goat skin has been investigated by TG/DTG, DSC simultaneous analysis performed in static air atmosphere, at six heating rates in the range 3–15 K min−1. At the progressive heating in air atmosphere, the investigated material exhibits three main successive processes occurring with formation of volatile products, namely the dehydration followed by two thermo-oxidative processes. The processing of the non-isothermal data corresponding to the first process of thermo-oxidation was performed by using Netzsch Thermokinetics—a Software Module for Kinetic Analysis. The dependence of activation energy, evaluated by isoconversional methods suggested by Friedman, and Ozawa, Flynn and Wall, on the conversion degree and the relative high standard deviations of this quantity show that the investigated process is a complex one. The mechanism and the corresponding kinetic parameters were determined by Multivariate Non-linear Regression program. Three mechanisms, one consisting in four successive steps and two others in five successive steps, exhibit the best F-test Fit Quality for TG curves. It was also used the previously suggested criterion, according to which the most probable process mechanism correspond to the best agreement between E FR = E FR (α) (E FR is the activation energy evaluated by isoconversional method suggested by Friedman; α is the conversion degree) obtained from non-isothermal experimental data and activation energy values, E iso, obtained by applying the differential method to isothermal data simulated using non-isothermal kinetic parameters. According to this last criterion, the most probable mechanism of parchment oxidation consists in four successive steps. The contribution of the thermo-oxidation process in the parchment damage by natural aging is discussed.

Restricted access

Isoconversional analysis of solid state transformations

A critical review. Part I. Single step transformations with constant activation energy

Journal of Thermal Analysis and Calorimetry
Authors: J. Farjas and P. Roura

is common consensus that isoconversional (model-free) methods are the most reliable [ 1 – 7 ]. However, the results provided by the isoconversional methods should be interpreted carefully because erroneous conclusions regarding the nature of the

Restricted access

Studies on energetic compounds

Part 40. Kinetics of thermal decomposition of some bis(propylenediamine)metal perchlorate complexes

Journal of Thermal Analysis and Calorimetry
Authors: G. Singh and D. K. Pandey

Bis(propylenediamine)metal perchlorate (BPMP) complexes like [M(pn)2](ClO4)2 (where M=Cr, Mn, Ni, Cu, Zn and pn=propylenediamine) have been prepared and characterized by gravimetric methods, infrared and elemental analysis. Thermal properties have been studied using simultaneous thermogravimetry-differential thermal analysis in atmospheres of nitrogen and air to examine the effect of atmospheric change on thermal decomposition of these complexes. Changing of the atmosphere does not cause any measurable changes in the decomposition of complexes. However, as indicated by thermoanalytical techniques, the thermal stability of present complexes decreases in the order: [Cr(pn)2](ClO4)2>[Mn(pn)2](ClO4)2>[Zn(pn)2](ClO4)2>[Ni(pn)2](ClO4)2>[Cu(pn)2](ClO4)2. Isothermal thermogravimetry, over the temperature range of decomposition has been done for all the complexes. An analysis of the kinetics of thermal decomposition was made using a model fitting procedure as well as an isoconversional method, independent of any model. The results of both kinetic approaches have been discussed critically. The explosion delay (D E) was measured to investigate the trend of rapid thermal analysis.

Restricted access

Abstract  

The nitrate complexes of copper, nickel and zinc with diethylenetriamine (dien) i.e. [Cu(dien)2](NO3)2, [Ni(dien)2](NO3)22H2O and [Zn(dien)2](NO3)2 have been prepared and characterised. Thermal studies were undertaken using TG-DTG, DSC, ignition delay (t id) and ignition temperature (IT) measurements. Impact sensitivity was measured using drop mass technique. The kinetic parameters for both non-isothermal and isothermal decomposition of the complexes were evaluated by employing Coats-Redfern (C-R) method and Avrami-Erofeev (A-E) equations (n=2 and 3), respectively. The kinetic analysis, using isothermal TG data, was also made on the basis of model free isoconversional method and plausible mechanistic pathways for their decomposition are proposed. Rapid process was assessed by ignition delay measurements. All these complexes were found to be insensitive towards impact of 2 kg mass hammer up to the height limit (110 cm) of the instrument used. The heat of reaction (?H) for each stage of decomposition was determined using DSC.

Restricted access