Search Results

You are looking at 101 - 110 of 206 items for :

  • "non-isothermal kinetics" x
  • Refine by Access: All Content x
Clear All

Abstract  

A new procedure for the prediction of the isothermal behaviour of the solid-gas system from non-isothermal data is suggested. It bypasses the use of various approximations of the temperature integral that ground the integral methods of prediction. The procedure was checked for: (1) simulated data corresponding to a first order reaction; (2) experimental data obtained in the isothermal and non-isothermal decompositions of ammonium perchlorate. For the simulated data, a very good agreement between calculated isotherms and those evaluated by means of the suggested procedure was obtained. A satisfactory agreement (errors in time evaluation corresponding to a given degradation lower than 18%, for 0.10a0.37 and lower than 10% for 0.37a0.70) was obtained for the experimental data corresponding to the decomposition of ammonium perchlorate. In this last case, the mentioned differences between experimental and calculated data can be due both to the inherent errors in the evaluation of the decomposition isotherms and to the dependence of the activation energy on the conversion degree.

Restricted access

Abstract  

A kinetic study of the crystallization of poly(ethylene oxide) (PEO) and of a blend of PEO+poly(bisphenol A-co-epichlorohydrin) (PBE) was performed by using DSC in a non-isothermal program at constant cooling rates. The curves obtained were analyzed by the Kissinger, Ozawa and Friedman methods, with determination of the kinetic parameters in each case. As a consequence of the presence of PBE, the kinetic parameters were altered, leading to the conclusion that PBE has some influence on the crystallization of PEO, modifying its mechanism.

Restricted access

Abstract  

This paper deals with the investigation concerning the thermal stability of two new azo-derivatives and their Cu(II) complexes of type [Cu(L1)2] and, respectively, ((C4H9)4N)2[Cu(L2)2]. The thermal decomposition steps have been put in evidence. For the kinetically workable ones, the values of the activation energy vs. conversion degree were determined.

Restricted access

Abstract  

The topic of the present work is to study the thermal behavior of phenitoine and pharmaceuticals by means of kinetic parameters determined in non-isothermal conditions. The TG/DTG data were obtained at four heating rates. These data were processed by the following methods: Friedman (FR), Budrugeac-Segal (BS) and the modified non-parametric kinetics (Sempere-Nomen). The main conclusions of the kinetic study are The FR method is versatile, but the values of the kinetic parameters are not certain, especially by multistep processes. The BS method offer a non-variant part of the activation energy, but the kinetic description is only formal. The NPK method is able to discriminate between two or more steps of a complex process. In our case, there are a preponderant process (more than 70% of the explained variance). By the NPK method there is a non-speculative separation of the temperature, respective conversion degree dependence of the reaction rate.

Restricted access

Abstract  

A comparative kinetic analysis on the thermal decomposition of tartaric acid and potassium tartrate under non-isothermal conditions was performed. The non-isothermal kinetic parameters were determined by the following four methods: integral isoconversional method suggested by Flynn-Wall-Ozawa (FWO method); differential isoconversional method suggested by Friedman; Budrugeac-Segal method and Non-Parametric-Kinetic (NKP) method suggested by Sempere and Nomen and modified by Vlase and Doca. The comparison of the results obtaining by these methods leads to interesting conclusions. The experimental data were obtained in dynamic nitrogen atmosphere at heating rates of 5, 7, 10, 12 and 15 K min−1. The less speculative kinetic analysis was possible by the NPK method.

Restricted access

Summary The thermal behavior of KH2PO4, NaH2PO4 and Na2HPO4 under non-isothermal conditions using TG method with different heating rates was studied. The values of the reaction rate were processed by means of Friedman’s differential-isoconversional method. A dependence of the activation energy vs. conversion was observed. Therefore a procedure based on the compensation effect (suggested by Budrugeac and Segal) was applied. A less speculative data processing protocol was offered by the non-parametric kinetics method suggested by Serra, Nomen and Sempere. Three steps were observed by non-isothermal heating: a dehydration, a dimerization and a polycondensation. The differences in the intimate reaction mechanism are determined by the initial number of water molecules.

Restricted access

Abstract

A nonlinear algorithm has been suggested to increase the accuracy of evaluating the activation energy by the integral isoconversional method. A minor modification of the algorithm has made it possible to adapt the isoconversional method for an arbitrary variation of the temperature. This advanced isoconversional method allows for trustworthy estimates of the activation energy when the thermal effect of a reaction makes the temperature of a sample deviate from a prescribed heating program.

Restricted access

Abstract  

The thermo-oxidative degradation of poly(vinyl alcohol) (PVA) has been investigated by TG+DTG+DTA simultaneous analysis performed in static air atmosphere, at four heating rates, namely 3, 5, 10 and 15 K min−1. TG, DTG and DTA curves showed that, in the temperature range 25–700°C, four successive processes occur. The first process consisting in the loss of physical adsorbed water is followed by three processes of thermal and/or thermo-oxidative degradations. The processing of the non-isothermal data corresponding to the second process (the first process of thermo-oxidation) was performed by using Netzsch Thermokinetics — A Software Module for Kinetic Analysis. The dependence of the activation energy evaluated by Friedman’s isoconversional method on the conversion degree shows that the investigated process is complex one. The mechanism of this process and the corresponding kinetic parameters were determined by Multivariate Non-linear Regression Program and checked for quasi-isothermal experimental data. It was pointed out that the first process of thermo-oxidation of PVA consists in three consecutive steps having Avrami-Erofeev kinetic model. The obtained results can be used for prediction of the thermal lifetime of PVA corresponding to a certain temperature of use and an endpoint criterion.

Restricted access

Steps in a minefield

Some kinetic aspects of thermal analysis

Journal of Thermal Analysis and Calorimetry
Author: M. Brown

Abstract  

This paper is a review of some of the controversial kinetic aspects of thermal analysis, starting from the ‘šesták questions’ posed in 1979 and looking at developments in some areas since that time. Aspects considered include: temperature programmes and variations, models and mechanisms, kinetic parameters, distinguishability and extent of fit of kinetic models, complementary evidence for kinetic models, the Arrhenius equation and the compensation effect. The value of the ideas of non-isothermal kinetics in chemical education is emphasized.

Restricted access

A calculation technique based on the SVD algorithm is suggested for solving non-isothermal kinetics problems. The uncertainties in the sought parameter values are obtained by superimposing random (Gauss) noise on experimental dependences.

Restricted access